Study on combustion solution prepared Co0.25Ni0.25Cu0.25Mn0.25Fe2O4 and their photocatalytic performance
-
摘要: 以硝酸钴(Co(NO3)2·6H2O)、硝酸铁(Fe(NO3)3·9H2O)、硝酸镍(Ni(NO3)2·6H2O)、硝酸锰(Mn(NO3)2·4H2O)、硝酸铜(Cu(NO3)2·3H2O)为原料,甘氨酸为燃料,通过溶液燃烧合成法制备Co0.25Ni0.25Cu0.25Mn0.25Fe2O4,探究不同甘氨酸的量对Co0.25Ni0.25Cu0.25Mn0.25Fe2O4粉末的制备以及光催化性能的影响,并以有机溶剂亚甲基蓝为污染源,测试其光催化性能。对粉末样品进行了XRD检测,并找到甘氨酸的最佳用量。结果表明:当甘氨酸与硝酸铁的摩尔比为4时,对亚甲基蓝的光催化性能最好,完全降解初始浓度0.002%、0.004%、0.006%亚甲基蓝的时间分别为40、60、70 min,并进行了动力学分析,认为降解过程受扩散步骤控制。以葡萄糖作为添加剂可有效提高Co0.25Ni0.25Cu0.25Mn0.25Fe2O4粉末的催化活性,当添加量为1 g时,完全降解初始浓度为0.004%的亚甲基蓝所需时间缩短至50 min,降解效率提高了16.7%。Abstract: Using cobalt nitrate (Co(NO3)2·6H2O), iron nitrate (Fe(NO3)3·9H2O), nickel nitrate (Ni(NO3)2·6H2O), manganese nitrate (Mn(NO3)2·4H2O), copper nitrate (Cu(NO3)2·3H2O) as raw materials and glycine as fuel, Co0.25Ni0.25Cu0.25Mn0.25Fe2O4 was prepared by solution combustion synthesis. The preparation and catalytic performance of Co0.25Ni0.25Cu0.25Mn0.25Fe2O4 powder with different mount of glycine were investigated. The organic solvent methylene blue was used as the pollution source to test its photocatalytic performance. The powder samples were detected by XRD, and the optimum amount of glycine was found. The results showed that when the molar ratio of glycine to iron nitrate was 4, of methylene blue achieved the best photocatalytic performance. The time for complete degradation of 0.002%, 0.004%, and 0.006% methylene blue was 40 minutes, 60 minutes, and 70 minutes, respectively. The kinetic analysis was also carried out. Glucose as the additives can effectively improve Co0.25Ni0.25Cu0.25Mn0.25Fe2O4 powder in the catalytic activity. When the adding glucose amount is 1 g, the required time for fully biodegradable initial concentration of 0.004% MB is 50 minutes, and degradation efficiency increased by 16.7%.
-
Key words:
- high entropy oxides /
- solution combustion /
- photocatalysis /
- degradation rate
-
表 1 试验原料及配比
Table 1. The raw materials and ratio
编号 甘氨酸与硝酸铁
的摩尔比φ加量/g 硝酸铁 硝酸锰 硝酸钴 硝酸镍 硝酸铜 甘氨酸 1 3 4.04 0.474 0.364 0.363 0.302 2.25 2 4 4.04 0.474 0.364 0.363 0.302 3.00 3 5 4.04 0.474 0.364 0.363 0.302 3.75 4 6 4.04 0.474 0.364 0.363 0.302 4.50 -
[1] Yang Xujun, Lu Yongming, Zhu Jie. Discussion on several issues of industrial wastewater treatment and reuse[J]. Shanxi Chemical Industry, 2023,43(5):246-247, 252. (杨旭军, 陆永明, 朱杰. 工业废水处理再利用若干问题的探讨[J]. 山西化工, 2023,43(5):246-247, 252.Yang Xujun, Lu Yongming, Zhu Jie. Discussion on several issues of industrial wastewater treatment and reuse[J]. Shanxi Chemical Industry, 2023, 43(5): 246-247, 252. [2] Zheng Xianglei. Research on visible light catalytic oxidation and photo Fenton oxidation for the degradation of organic compounds in water [D]. Qingdao: Qingdao University of Science and Technology, 2020. (郑祥雷. 可见光催化氧化与光芬顿氧化降解水中有机物的研究[D]. 青岛: 青岛科技大学, 2020.Zheng Xianglei. Research on visible light catalytic oxidation and photo Fenton oxidation for the degradation of organic compounds in water [D]. Qingdao: Qingdao University of Science and Technology, 2020. [3] Yang Jiayi. Research progress on adsorption treatment of printing and dyeing wastewater[J]. Chemical Fiber and Textile Technology, 2022,51(12):55-57. (杨佳怡. 吸附法处理印染废水的研究进展[J]. 化纤与纺织技术, 2022,51(12):55-57.Yang Jiayi. Research progress on adsorption treatment of printing and dyeing wastewater[J]. Chemical Fiber and Textile Technology, 2022, 51(12): 55-57. [4] Li Liying. Application of activated carbon adsorption technology in water treatment[J]. Chemical Management, 2020(23):116-117. (李栗莹. 活性炭吸附技术在水处理中的应用[J]. 化工管理, 2020(23):116-117.Li Liying. Application of activated carbon adsorption technology in water treatment[J]. Chemical Management, 2020(23): 116-117. [5] Cao Chunping. Chemical precipitation ion exchange method for treating aluminum containing organic acid wastewater[D]. Qingdao: China University of Petroleum (East China), 2015. (曹春萍. 化学沉淀—离子交换法处理含铝有机酸废水[D]. 青岛: 中国石油大学(华东), 2015.Cao Chunping. Chemical precipitation ion exchange method for treating aluminum containing organic acid wastewater[D]. Qingdao: China University of Petroleum (East China), 2015. [6] Xu Jie. Research on the application of chemical processes in wastewater treatment[J]. Information Recording Materials, 2023,24(2):55-57. (许杰. 化学工艺在废水处理中的应用研究[J]. 信息记录材料, 2023,24(2):55-57.Xu Jie. Research on the application of chemical processes in wastewater treatment[J]. Information Recording Materials, 2023, 24(2): 55-57. [7] Huang Maojuan, Yang Li. Research progress on photocatalytic degradation of organic pollutants in water environment[J]. Chemical Engineer, 2022,36(6):78-81. (黄茂娟, 杨利. 光催化降解水环境中有机污染物的研究进展[J]. 化学工程师, 2022,36(6):78-81.Huang Maojuan, Yang Li. Research progress on photocatalytic degradation of organic pollutants in water environment[J]. Chemical Engineer, 2022, 36(6): 78-81. [8] Chen Renhua. Preparation of TiO2 and Ag3PO4 based composite materials and their photocatalytic degradation performance for organic pollutants[D]. Lanzhou: Lanzhou Jiaotong University, 2022. (陈仁华. TiO2与Ag3PO4基复合材料的制备及其对有机污染物的光催化降解性能研究[D]. 兰州: 兰州交通大学, 2022.Chen Renhua. Preparation of TiO2 and Ag3PO4 based composite materials and their photocatalytic degradation performance for organic pollutants[D]. Lanzhou: Lanzhou Jiaotong University, 2022. [9] You Zijuan, Chen Hanlin. Research progress in the synthesis and catalytic application of high entropy oxides[J]. Materials Review, 2023, 7: 1-18. (游子娟, 陈汉林. 高熵氧化物合成及催化应用研究进展 [J]. 材料导报, 2023, 7: 1-18.You Zijuan, Chen Hanlin. Research progress in the synthesis and catalytic application of high entropy oxides[J]. Materials Review, 2023, 7: 1-18. [10] Liu Wenqiang. Preparation of Co/Al2O3 by solution combustion method and its selective catalytic oxidation of cyclohexane [D]. Qingdao: Qingdao University of Science and Technology, 2019. (刘文强. 溶液燃烧法制备Co/Al2O3及其选择性催化氧化环己烷的研究 [D]. 青岛: 青岛科技大学, 2019.Liu Wenqiang. Preparation of Co/Al2O3 by solution combustion method and its selective catalytic oxidation of cyclohexane [D]. Qingdao: Qingdao University of Science and Technology, 2019. [11] Zhang Yang, Zou Qin, Li Yanguo, et al. Research progress and prospects of high entropy oxides[J]. Diamond and Abrasive Engineering, 2022,42(1):30-41. (张扬, 邹芹, 李艳国, 等. 高熵氧化物的研究进展与展望[J]. 金刚石与磨料磨具工程, 2022,42(1):30-41.Zhang Yang, Zou Qin, Li Yanguo, et al. Research progress and prospects of high entropy oxides[J]. Diamond and Abrasive Engineering, 2022, 42(1): 30-41. [12] Li Jiake, Cheng Kai, Liu Xin, et al. The effect of fuel/oxidant ratio on the morphology and photocatalytic performance of ZnO ultrafine powder[J]. Journal of Ceramics, 2013,34(3):299-304. (李家科, 程凯, 刘欣, 等. 燃料/氧化剂比值对ZnO超细粉体形貌和光催化性能的影响[J]. 陶瓷学报, 2013,34(3):299-304.Li Jiake, Cheng Kai, Liu Xin, et al. The effect of fuel/oxidant ratio on the morphology and photocatalytic performance of ZnO ultrafine powder[J]. Journal of Ceramics, 2013, 34(3): 299-304. [13] Xiang Houzheng, Quan Feng, Li Wenchao, et al. Research progress on the preparation and application of high entropy oxides[J]. Journal of Process Engineering, 2020,20(3):245-253. (项厚政, 权峰, 李文超, 等. 高熵氧化物的制备及应用研究进展[J]. 过程工程学报, 2020,20(3):245-253.Xiang Houzheng, Quan Feng, Li Wenchao, et al. Research progress on the preparation and application of high entropy oxides[J]. Journal of Process Engineering, 2020, 20(3): 245-253. [14] Zhang Yue. Preparation and electrocatalytic performance of spinel/rock salt type high entropy oxides[D]. Nanjing: Southeast University, 2022. (章粤. 尖晶石/岩盐型高熵氧化物的制备与电催化性能 [D]. 南京: 东南大学, 2022.Zhang Yue. Preparation and electrocatalytic performance of spinel/rock salt type high entropy oxides[D]. Nanjing: Southeast University, 2022. [15] Sánchez FAL, Almeida W L, Sousa V C. An investigation of fuel precursors and calcination temperature to obtain mayenite (Ca12Al14O33) powders by solution combustion synthesis[J]. Ceramics International, 2023, 49 (10): 15726-15733. (桑切斯 FAL, Almeida W L, Sousa, V C. 溶液燃烧合成钙铝石(Ca12Al14O33)粉末的燃料前驱体和煅烧温度研究[J]. 陶瓷国际, 2023, 49(10): 15726-15733.Sánchez FAL, Almeida W L, Sousa V C. An investigation of fuel precursors and calcination temperature to obtain mayenite (Ca12Al14O33) powders by solution combustion synthesis[J]. Ceramics International, 2023, 49 (10): 15726-15733. [16] Ge Ming, Hu Zheng, He Quanbao. Application of advanced oxidation technology based on spinel shaped ferrite in organic wastewater treatment[J]. Chemical Progress, 2021,33(9):1648-1664. (葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021,33(9):1648-1664.Ge Ming, Hu Zheng, He Quanbao. Application of advanced oxidation technology based on spinel shaped ferrite in organic wastewater treatment[J]. Chemical Progress, 2021, 33(9): 1648-1664. [17] Hu Yin. Research on catalytic Fenton deep treatment of printing and dyeing wastewater using pyrite cinder[D]. Shanghai: Donghua University, 2014. (胡银. 硫铁矿烧渣催化类Fenton深度处理印染废水研究[D]. 上海: 东华大学, 2014.Hu Yin. Research on catalytic Fenton deep treatment of printing and dyeing wastewater using pyrite cinder[D]. Shanghai: Donghua University, 2014. [18] Chen Xiaoyang. Research on the degradation of typical organic pollutants in water using advanced oxidation technology based on sulfate free radicals [D]. Dalian: Dalian University of Technology, 2007. (陈晓旸. 基于硫酸自由基的高级氧化技术降解水中典型有机污染物研究[D]. 大连: 大连理工大学, 2007.Chen Xiaoyang. Research on the degradation of typical organic pollutants in water using advanced oxidation technology based on sulfate free radicals [D]. Dalian: Dalian University of Technology, 2007. [19] Xiao Kaibang, Xu Weicheng, Liang Fawen, et al. Research on the performance of Mo source modified graphite nitride carbon (g-C3N4) activated peroxymonosulfate for visible light degradation of Rhodamine B[J]. Journal of Environmental Science, 2021,41(9):3521-3534. (肖开棒, 许伟城, 梁发文, 等. Mo源改性石墨相氮化碳(g-C3N4)活化过一硫酸盐可见光降解罗丹明B的性能研究[J]. 环境科学学报, 2021,41(9):3521-3534.Xiao Kaibang, Xu Weicheng, Liang Fawen, et al. Research on the performance of Mo source modified graphite nitride carbon (g-C3N4) activated peroxymonosulfate for visible light degradation of Rhodamine B[J]. Journal of Environmental Science, 2021, 41(9): 3521-3534. [20] Liu Yanhong, Ma Xiaoguang, Zhu liye, et al. Preparation and performance study of C/Tb co doped TiO2 photocatalyst[J]. Journal of Molecular Science, 2022,38(6):478-485. (刘艳红, 马晓光, 朱丽叶, 等. C/Tb共掺杂TiO2光催化剂的制备及性能研究[J]. 分子科学学报, 2022,38(6):478-485.Liu Yanhong, Ma Xiaoguang, Zhu liye, et al. Preparation and performance study of C/Tb co doped TiO2 photocatalyst[J]. Journal of Molecular Science, 2022, 38(6): 478-485. [21] Liu Yuhui. Preparation of glucose modified iron oxide and its Fenton catalytic performance [D]. Shijiazhuang: Hebei Normal University, 2017. (刘玉蕙. 葡萄糖改性铁氧化物的制备及其芬顿催化性能[D]. 石家庄:河北师范大学, 2017.Liu Yuhui. Preparation of glucose modified iron oxide and its Fenton catalytic performance [D]. Shijiazhuang: Hebei Normal University, 2017. -
下载: