中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

316L焊接接头不同区域低周疲劳特性与寿命预测方法

郭严峻 张威 杨桥发 周昌玉

郭严峻, 张威, 杨桥发, 周昌玉. 316L焊接接头不同区域低周疲劳特性与寿命预测方法[J]. 钢铁钒钛, 2024, 45(5): 183-192. doi: 10.7513/j.issn.1004-7638.2024.05.025
引用本文: 郭严峻, 张威, 杨桥发, 周昌玉. 316L焊接接头不同区域低周疲劳特性与寿命预测方法[J]. 钢铁钒钛, 2024, 45(5): 183-192. doi: 10.7513/j.issn.1004-7638.2024.05.025
Guo Yanjun, Zhang Wei, Yang Qiaofa, Zhou Changyu. Low cycle fatigue characteristics and life prediction methods for different regions of 316L welded joints[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 183-192. doi: 10.7513/j.issn.1004-7638.2024.05.025
Citation: Guo Yanjun, Zhang Wei, Yang Qiaofa, Zhou Changyu. Low cycle fatigue characteristics and life prediction methods for different regions of 316L welded joints[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 183-192. doi: 10.7513/j.issn.1004-7638.2024.05.025

316L焊接接头不同区域低周疲劳特性与寿命预测方法

doi: 10.7513/j.issn.1004-7638.2024.05.025
基金项目: 国家自然科学基金青年基金项目(52005250)。
详细信息
    作者简介:

    郭严峻,1999年出生,男,江苏镇江人,硕士研究生,主要从事高温材料强度研究,E-mail:202161207139@njtech.edu.cn

    通讯作者:

    张威,1992年出生,男,江苏徐州人,副教授,硕士生导师,主要从事高温结构的蠕变、疲劳与结构完整性研究,E-mail:zhang_wei@njtech.edu.cn

  • 中图分类号: TF76,TG405

Low cycle fatigue characteristics and life prediction methods for different regions of 316L welded joints

  • 摘要: 系统研究了316L母材、焊材、焊接接头三种试样的高温低周疲劳特性,通过在传统寿命预测模型中引入疲劳寿命减损系数,实现了焊接接头不同区域的低周疲劳寿命预测。结果表明,低周疲劳过程中,三种试样均在初期快速硬化,然后进入稳定循环状态,最后峰值应力快速下降并失效,其中母材硬化持续周次最长,焊材与焊接接头的硬化持续周次相对较短。随着应变幅值的增加,三者的疲劳寿命显著降低,其中母材疲劳寿命明显高于焊材及焊接接头,焊材与焊接接头的疲劳寿命相近。基于母材低周疲劳寿命,采用寿命减损系数对不同材料的低周疲劳寿命进行等效处理,选用多种寿命预测模型对三种试样的等温疲劳寿命进行预测,其中广义应变能损伤函数法在五个模型中表现出最强的适用性。
  • 图  1  低周疲劳试样及取样位置

    (a)焊材试样;(b)焊接接头试样;(c)母材试样

    Figure  1.  Low cycle fatigue specimen and sampling location

    图  2  不同应变幅值下的循环峰值应力响应曲线

    (a)母材;(b)焊材;(c)焊接接头

    Figure  2.  Cyclic peak stress response curves under various strain amplitudes

    图  3  三种材料的硬化与软化趋势

    (a)硬化持续时间曲线;(b)硬化量曲线;(c)软化速率曲线

    Figure  3.  Evolution of hardening and softening of the three materials

    图  4  不同材料半寿命周期的循环应力-应变曲线

    (a) 0.4%;(b) 0.5%;(c) 0.6%;(d) 0.7%

    Figure  4.  Cyclic stress–strain curves at half-life cycle of different materials

    图  5  不同应变幅值下不同材料非弹性应变变化规律

    (a) 0.4%;(b) 0.5%;(c) 0.6%;(d) 0.8%

    Figure  5.  Variation of the inelastic strain of different materials under different strain amplitudes

    图  6  不同应变幅值下不同材料非弹性应变能密度变化规律

    (a) 0.4%;(b) 0.5%;(c) 0.6%;(d) 0.8%

    Figure  6.  Variation of the inelastic strain energy density of different materials under different strain amplitudes

    图  7  母材、焊材、焊接接头在不同应变幅值下的疲劳寿命

    (a)不同应变幅值下的低周疲劳寿命及拟合曲线;(b)疲劳寿命减损系数曲线

    Figure  7.  Fatigue life of three materials under different strain amplitudes

    图  8  基于Manson-Coffin 寿命预测模型的低周疲劳寿命预测值与试验值的比较

    Figure  8.  Comparison of predicted and experimental values of fatigue life based on the Manson-Coffin model

    图  9  基于能量法的等温疲劳寿命预测值与试验值的比较

    Figure  9.  Comparison of predicted and measured values of fatigue life based on energy method

    图  10  基于广义应变能损伤函数法的寿命预测结果与试验值的比较

    Figure  10.  Comparison of predicted and measured values of fatigue life based on GSEDF

    图  11  基于断裂能预测法的寿命预测结果与试验值的比较

    Figure  11.  Comparison of predicted and measured values of fatigue life based on FE

    图  12  基于Ostergern 损伤函数模型的寿命预测结果与试验值的比较

    Figure  12.  Comparison of predicted and measured values of fatigue life based on Ostergern damage function model

    图  13  五种寿命预测模型的寿命预测结果平均相对误差的对比

    Figure  13.  Comparison of the mean relative error of life prediction results from five life prediction models

    表  1  316L母材和焊材的主要化学成分

    Table  1.   Main chemical compositions of 316L base metal and weld metal %

    材料CCrNiMoMnSiPS
    母材0.01817.8012.082.231.080.350.0190.001
    焊材0.02019.6413.202.331.500.280.0140.007
    下载: 导出CSV

    表  2  不同应变幅值下316L母材、焊材、焊接接头等温低周疲劳试验方案

    Table  2.   Isothermal low-cycle fatigue test scheme for 316L base material, welded metal and welded joint under different strain amplitudes

    试样编号温度/ ℃应变幅值/%周期/s
    BMIF04550550±0.480
    BMIF05550550±0.5100
    BMIF06550550±0.6120
    BMIF08550550±0.8160
    WJIF04550550±0.480
    WJIF05550550±0.5100
    WJIF06550550±0.6120
    WJIF08550550±0.8160
    WMIF04550550±0.480
    WMIF05550550±0.5100
    WMIF06550550±0.6120
    WMIF08550550±0.8160
    下载: 导出CSV
  • [1] Stamford L, Azapagic A. Sustainability indicators for the assessment of nuclear power[J]. Energy, 2011,36(10):6037-6057. doi: 10.1016/j.energy.2011.08.011
    [2] Zhu Zhiquan, Chen Qian. Opportunities and risks confronted by the development of China’s nuclear power industry and the countermeasures[J]. Journal of East China University of Technology( Social Science), 2017,36(4):318-321. (朱志权, 陈倩. 我国核电产业发展面临的机遇、风险及其对策[J]. 东华理工大学学报(社会科学版), 2017,36(4):318-321.

    Zhu Zhiquan, Chen Qian. Opportunities and risks confronted by the development of China’s nuclear power industry and the countermeasures[J]. Journal of East China University of Technology( Social Science), 2017, 36(4): 318-321.
    [3] Fan Y, Liu T G, Xin L, et al. Thermal aging behaviors of duplex stainless steels used in nuclear power plant: A review[J]. Journal of Nuclear Materials, 2021,544:152693. doi: 10.1016/j.jnucmat.2020.152693
    [4] Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013,61(3):735-758. doi: 10.1016/j.actamat.2012.11.004
    [5] Luo Jiong. Influence of environment on fracture toughness and fracture behavior of nuclear safe-end dissimilar metal welded joint[D]. Shenyang: Northeastern University, 2014. (罗炯. 环境对核电接管安全端接头断裂行为及断裂韧性影响[D]. 沈阳: 东北大学, 2014.

    Luo Jiong. Influence of environment on fracture toughness and fracture behavior of nuclear safe-end dissimilar metal welded joint[D]. Shenyang: Northeastern University, 2014.
    [6] Li Yifei, Cai Zhipeng, Tang Zhinan, et al. Weak zone shift in welded joints for low cycle fatigue[J]. Journal of Tsinghua University(Science and Technology), 2015,55(10):1056-1060, 1066. (李轶非, 蔡志鹏, 汤之南, 等. 焊接接头低周疲劳性能薄弱区转移[J]. 清华大学学报(自然科学版), 2015,55(10):1056-1060, 1066.

    Li Yifei, Cai Zhipeng, Tang Zhinan, et al. Weak zone shift in welded joints for low cycle fatigue[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1056-1060, 1066.
    [7] Veerababu J, Goyal S, Sandhya R, et al. Low cycle fatigue behaviour of grade 92 steel weld joints[J]. International Journal of Fatigue, 2017,105:60-70. doi: 10.1016/j.ijfatigue.2017.08.013
    [8] Veerababu J, Goyal S, Nagesha A. Studies on creep-fatigue interaction behavior of grade 92 steel and its weld joints[J]. International Journal of Fatigue, 2021,149:106307. doi: 10.1016/j.ijfatigue.2021.106307
    [9] Farragher T P, Scully S, O'Dowd N P, et al. High temperature, low cycle fatigue characterization of P91 weld and heat affected zone material[J]. Journal of Pressure Vessel Technology, 2014,136(2):021403. doi: 10.1115/1.4025943
    [10] Li Haizhou, Chen Jintao, Chen Hui, et al. Cyclic plastic deformation mechanism and cyclic hardening model of sanicro 25 steel welded joint[J]. Materials Science and Engineering: A, 2021,827:141878. doi: 10.1016/j.msea.2021.141878
    [11] Rao K B S, Valsan M, Mannan S L. Strain-controlled low-cycle fatigue behavior of type-304 stainless-steel base material, type-308 stainless-steel weld metal and 304-308 stainless-steel weldments[J]. Materials Science & Engineering A, 1990,130(1):67-82.
    [12] Rao K B S, Sandhya R, Mannan S L. Creep-fatigue interaction behavior of type-308 stainless-steel weld metal and type-304 stainless-steel base-metal[J]. International Journal of Fatigue, 1993,15(3):221-229. doi: 10.1016/0142-1123(93)90180-X
    [13] Brinkman C, Korth G. Heat-to-heat variations in the fatigue and creep-fatigue behavior of AISI type 304 stainless steel at 593 ℃[J]. Journal of Nuclear Materials, 1973,48(3):293-306. doi: 10.1016/0022-3115(73)90026-3
    [14] Brinkman C, Koth G, Beeston J. Comparison of the strain-controlled low cycle fatigue behavior of stainless type 304/308 weld and base material[R]. Idaho Falls, ID, Aerojet Nuclear Co. , 1975.
    [15] Rao K B S, Valsan M, Sandhya R, et al. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless-steel weld metal[J]. Journal of Engineering Materials & Technology, 1994,116(2):193-199.
    [16] Zhang Yingying, Zhang Xinning, Shi Yu. Microstructure and fracture behavior of 316L stainless steel welded joints under high temperature low cycle[J]. Journal of Materials Science and Engineering, 2019,37(3):501-504. (张莹莹, 张新宁, 师瑀. 316L不锈钢焊接接头高温低周期疲劳显微结构变化和断裂特征[J]. 材料科学与工程学报, 2019,37(3):501-504.

    Zhang Yingying, Zhang Xinning, Shi Yu. Microstructure and fracture behavior of 316L stainless steel welded joints under high temperature low cycle[J]. Journal of Materials Science and Engineering, 2019, 37(3): 501-504.
    [17] Li Mingna, Liu Feng. Effect of tensile dwell on low cycle fatigue cyclic stress response and damage mechanism of 316L austenitic stainless steel welding joint[J]. Transactions of the China Welding Institution, 2014,35(9):87-91, 95. (李明娜, 刘峰. 拉保持对316L奥氏体不锈钢焊接接头低周疲劳循环应力响应及损伤机制的影响[J]. 焊接学报, 2014,35(9):87-91, 95.

    Li Mingna, Liu Feng. Effect of tensile dwell on low cycle fatigue cyclic stress response and damage mechanism of 316L austenitic stainless steel welding joint[J]. Transactions of the China Welding Institution, 2014, 35(9): 87-91, 95.
    [18] Li Mingna, Liu Feng, Yu Hongmiao. Effect of post weld heat treatment on δ-ferrite structure and properties of 308L weldment stainless steel[J]. Hot Working Technology, 2013,42(9):9-11. (李明娜, 刘峰, 于洪淼. 焊后热处理对308L不锈钢焊缝δ-铁素体形态及性能的影响[J]. 热加工工艺, 2013,42(9):9-11.

    Li Mingna, Liu Feng, Yu Hongmiao. Effect of post weld heat treatment on δ-ferrite structure and properties of 308L weldment stainless steel[J]. Hot Working Technology, 2013, 42(9): 9-11.
    [19] Kumar T S, Nagesha A, Kumar J G, et al. Influence of thermal aging on tensile and low cycle fatigue behavior of type 316LN austenitic stainless steel weld joint[J]. Metallurgical and Materials Transactions A, 2018,49a(8):3257-3273.
    [20] Pham M S, Holdsworth S R. Dynamic strain ageing of AISI 316L during cyclic loading at 300 degrees C: Mechanism, evolution, and its effects[J]. Materials Science and Engineering: A, 2012,556:122-133. doi: 10.1016/j.msea.2012.06.067
    [21] Mohyla, Kubon P, Cep Z, et al. Evaluation of creep properties of steel P92 and its welded joint[J]. Metalurgija, 2014,53(2):175-178.
    [22] Coffin L. Predictive parameters and their application to high-temperature, low-cycle fatigue[J]. Fracture London Chapman & Hall, 1969: 643-654.
    [23] Wen Jianbin, Zhou Changyu, Li Xin, et al. Effect of temperature range on thermal-mechanical fatigue properties of P92 steel and fatigue life prediction with a new cyclic softening model[J]. International Journal of Fatigue, 2019,129:105226. doi: 10.1016/j.ijfatigue.2019.105226
    [24] Zhu Shunpeng, Huang Hongzhong, He Liping, et al. Improved generalized strain energy damage function method for high temperature low cycle fatigue-creep[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(8):1445-1452. (朱顺鹏, 黄洪钟, 何俐萍, 等. 高温低周疲劳-蠕变的改进型广义应变能损伤函数方法[J]. 航空学报, 2011,32(8):1445-1452.

    Zhu Shunpeng, Huang Hongzhong, He Liping, et al. Improved generalized strain energy damage function method for high temperature low cycle fatigue-creep[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1445-1452.
    [25] Zhu S P, Huang H Z. A generalized frequency separation-strain energy damage function model for low cycle fatigue-creep life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010,33(4):227-237.
    [26] Wang Xiaowei, Zhang Wei, Zhang Tianyu, et al. A new empirical life prediction model for 9%–12% Cr steels under low cycle fatigue and creep fatigue interaction loadings[J]. Metals, 2019,9(2):183. doi: 10.3390/met9020183
    [27] Nagae Y. Evaluation of creep-fatigue life based on fracture energy for modified 9Cr-1Mo steel[J]. Materials Science & Engineering A: Structural Materials Properties Microstructure & Processing, 2013,560:752-758.
    [28] Nagae Y, Takaya S, Asayama T. Creep-fatigue evaluation by hysteresis energy in modified 9Cr-1Mo steel[J]. Journal of Solid Mechanics and Materials Engineering, 2009,3(3):449-456. doi: 10.1299/jmmp.3.449
    [29] Yin Peng, Zhang Wei, Guo Shen, et al. Thermomechanical fatigue behaviour and damage mechanisms in a 9% Cr steel: Effect of strain rate[J]. Materials Science and Engineering: A, 2021,815:141308. doi: 10.1016/j.msea.2021.141308
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  72
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回