中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从提钒尾液制备磷酸锰铁锂正极材料的研究

李智宇 汤婷 王正豪 陈良 朱英明 吴可荆 罗冬梅

李智宇, 汤婷, 王正豪, 陈良, 朱英明, 吴可荆, 罗冬梅. 从提钒尾液制备磷酸锰铁锂正极材料的研究[J]. 钢铁钒钛, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
引用本文: 李智宇, 汤婷, 王正豪, 陈良, 朱英明, 吴可荆, 罗冬梅. 从提钒尾液制备磷酸锰铁锂正极材料的研究[J]. 钢铁钒钛, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
Li Zhiyu, Tang Ting, Wang Zhenghao, Chen Liang, Zhu Yingming, Wu Kejing, Luo Dongmei. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
Citation: Li Zhiyu, Tang Ting, Wang Zhenghao, Chen Liang, Zhu Yingming, Wu Kejing, Luo Dongmei. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003

从提钒尾液制备磷酸锰铁锂正极材料的研究

doi: 10.7513/j.issn.1004-7638.2024.06.003
基金项目: 国家自然科学基金(51774205)。
详细信息
    作者简介:

    李智宇,1999年出生,男,云南昭通人,硕士研究生,主要从事钒铬资源清洁生产技术研究,E-mail:1025725647@qq.com

    通讯作者:

    罗冬梅,1969年出生,女,博士,教授,主要从事资源回收和储能材料开发等研究,E-mail:dmluo@scu.edu.cn

  • 中图分类号: TF841.3,TM911

Preparation of lithium manganese iron phosphate cathode material from vanadium tailings

  • 摘要: 以钒渣提钒过程中产生的富含铁锰的浸出液为原料,通过共沉淀法制备了二水草酸铁锰Mn0.5Fe0.5C2O4∙2H2O,以此为前驱体,通过高温固相法成功合成了磷酸锰铁锂LiFe0.5Mn0.5PO4正极材料,实现了钒渣浸出液中铁锰资源的综合利用。结果表明,在初始pH值为3.5,温度25 ℃,反应时间90 min,草酸铵加料量为理论值的1.1倍,加料方式为正加的条件下,铁和锰的沉淀率分别为99.5%和99.4%,与其他杂质实现深度分离,Mn0.5Fe0.5C2O4·2H2O的纯度达99.97%,且粒径较小,分散性良好。可将其作为合成磷酸锰铁锂正极材料的前驱体,为磷酸锰铁锂的工业化生产提供了思路。
  • 图  1  (a)不同pH值对铁、锰、钒、铬沉淀率的影响;不同pH值(b)3.0;(c)3.5;(d)4.0;(e)4.5的SEM形貌

    Figure  1.  (a) Effect of reaction pH on the precipitation efficiency of Fe, Mn, V and Cr; SEM images of co-precipitation products at different pH (b) 3.0, (c) 3.5, (d) 4.0, (e) 4.5

    图  2  (a)不同温度对铁、锰、钒、铬沉淀率的影响;不同温度(b)25 ℃;(c)35 ℃;(d)45 ℃;(e)55 ℃的SEM形貌

    Figure  2.  (a) Effect of temperature on the precipitation efficiency of Fe, Mn, V and Cr; SEM images of different temperatures (b) 25 ℃, (c) 35 ℃, (d) 45 ℃, and (e) 55 ℃

    图  3  (a)反应时间对铁、锰、钒、铬沉淀率的影响;不同反应时间(b)0.5 h;(c)1 h;(d)1.5 h;(e)2 h的SEM形貌

    Figure  3.  (a) Effect of reaction time on the precipitation efficiency of Fe, Mn, V and Cr; SEM images of different reaction times (b) 0.5 h, (c) 1 h, (d) 1.5 h, (e) 2 h

    图  4  草酸铵加料量对铁、锰、钒、铬沉淀率的影响

    Figure  4.  Effect of (NH4)2C2O4 addition on the precipitation efficiency of Fe, Mn, V and Cr

    图  5  (a)加料方式对铁、锰、钒、铬沉淀率的影响;不同加料方式: (b)正加;(c)并加;(d)反加产物的SEM形貌

    Figure  5.  (a) Effect of addition methods on the precipitation efficiency of Fe, Mn, V, Cr; SEM images of different addition modes (b) forward addition, (c) parallel addition, (d) reverse addition

    图  6  加料方式对共沉淀产物粒度的影响

    Figure  6.  Effect of addition method on the particle sizes of co-precipitation products

    图  7  最佳条件共沉淀产物的XRD谱

    Figure  7.  XRD pattern of co-precipitation products under optimum conditions

    图  8  最佳条件共沉淀产物的SEM-EDS谱

    (a)SEM形貌;(b)图8(a)中A区的EDS元素含量;(c)沉淀产物中元素Fe, Mn, V和Cr的分布

    Figure  8.  SEM-EDS profiles of co-precipitated products under optimum conditions

    图  9  (a)LiMn0.5Fe0.5PO4的XRD谱;(b)LiMn0.5Fe0.5PO4的SEM形貌;(c)LiMn0.5Fe0.5PO4的倍率性能;(d)LiMn0.5Fe0.5PO4在0.1C倍率下的循环性能

    Figure  9.  (a) XRD patterns of LiMn0.5Fe0.5PO4, (b) SEM images of LiMn0.5Fe0.5PO4, (c) Rate performance of the LiMn0.5Fe0.5PO4, (d) Cycle performance of the LiMn0.5Fe0.5PO4 at 0.1C

    表  1  溶液中主要元素及其含量

    Table  1.   Major elemental contents in the solution g·L−1

    Fe Mn V Cr
    25.21 5.13 0.26 0.24
    下载: 导出CSV

    表  2  不同加料方式共沉淀产物的粒度

    Table  2.   Particle sizes of co-precipitation products with different addition methods

    加料方式D10/μmD50/μmD90/μm
    正加2.897.5717.32
    并加10.5726.6646.31
    反加12.1441.8762.46
    下载: 导出CSV

    表  3  沉淀产物的组成

    Table  3.   Compositions of the precipitation product %

    Fe Mn V Cr
    49.94 50.03 0.03 <0.01
    下载: 导出CSV
  • [1] Schmuch Richard, Wagner Ralf, Hörpel Gerhard, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018,3(4):267-278. doi: 10.1038/s41560-018-0107-2
    [2] Wang Yanqiang, Ke Junxiong, Wang Biao, et al. Research progress of ferromanganese phosphate precursors[J]. Chemical Management, 2023(25):138-141. (王彦强, 柯君雄, 王镖, 等. 磷酸锰铁前驱体的研究进展[J]. 化工管理, 2023(25):138-141.

    Wang Yanqiang, Ke Junxiong, Wang Biao, et al. Research progress of ferromanganese phosphate precursors[J]. Chemical Management, 2023(25): 138-141.
    [3] Franky E, Lora Bedoya, Victoria Salgado, et al. Stable V-doped LiMnPO4/C cathode material for Li-ion batteries produced by a fast and facile microwave-assisted synthesis[J]. Journal of Alloys and Compounds, 2023,938:53-61.
    [4] Said Oukahou, Mohammad Maymoun, Abdelali Elomrani, et al. Enhancing the electrochemical performance of olivine LiMnPO4 as cathode materials for Li-ion batteries by Ni-Fe codoping[J]. ACS Applied Energy Materials, 2022, 5(9): 10591-10603.
    [5] Du Hao, Kang Yuqiong, Li Chenglei, et al. Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder[J]. Battery Energy, 2023,2(4):20230011.
    [6] Li Jing, Qin Yuanbin, Ning Xiaohui, et al. Improved preparation of lithium manganese iron phosphate cathode materials by high-temperature solid-phase method[J]. Materials Guide, 2020,34(16):16001-16005. (李晶, 秦元斌, 宁晓辉, 等. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020,34(16):16001-16005. doi: 10.11896/cldb.19070270

    Li Jing, Qin Yuanbin, Ning Xiaohui, et al. Improved preparation of lithium manganese iron phosphate cathode materials by high-temperature solid-phase method[J]. Materials Guide, 2020, 34(16): 16001-16005. doi: 10.11896/cldb.19070270
    [7] Liu Hongyu, Ren Li, Li Jiashen, et al. Iron-assisted carbon coating strategy for improved electrochemical LiMn0.8Fe0.2PO4 cathodes[J]. Electrochimica Acta, 2016,212:800-807. doi: 10.1016/j.electacta.2016.07.049
    [8] Zhu Bo, Wang Yajing, Wang Yanming, et al. Synthesis of LiMn1- xFe xPO4 nanosheets by solvothermal method and their electrochemical properties[J]. Journal of Artificial Crystals, 2016,45(7):1826-1831. (朱波, 王雅静, 汪燕鸣, 等. 溶剂热法合成LiMn1- xFe xPO4纳米片及其电化学性能[J]. 人工晶体学报, 2016,45(7):1826-1831. doi: 10.3969/j.issn.1000-985X.2016.07.020

    Zhu Bo, Wang Yajing, Wang Yanming, et al. Synthesis of LiMn1-xFexPO4 nanosheets by solvothermal method and their electrochemical properties[J]. Journal of Artificial Crystals, 2016, 45(7): 1826-1831. doi: 10.3969/j.issn.1000-985X.2016.07.020
    [9] Lü Wei, Cai Wenlong, Wang Tuan, et al. Thermodynamic equilibrium theory-guided design and synthesis of Mg-doped LiFe0.4Mn0.6PO4/C cathode for lithium-ion batteries[J]. Journal of Energy Chemistry, 2023,9(1):619-627.
    [10] Yue Yang, Sun Miaomiao, Yu Wenhao, et al. Recovering Fe, Mn and Li from LiMn1- xFe xPO4 cathode material of spent lithium-ion battery by gradient precipitation[J]. Sustainable Materials and Technologies, 2023,36:1016-1026.
    [11] Wang Zhenghao, Chen Liang, Yang Ke, et al. Exploration of a novel vanadium source for the synthesis of a Na3V2(PO4)3 cathode of sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2024,12(5):1973-1983.
    [12] Wang Zhenghao, Chen Liang, Qin Zhifeng, et al. A green and efficient route for simultaneous recovery of low valence of vanadium and chromium, titanium and iron from vanadium slag[J]. Resources, Conservation Recycling, 2022,178:106046. doi: 10.1016/j.resconrec.2021.106046
    [13] Yin Rentao, Chen Liang, Qin Zhifeng, et al. A novel complexation method for separation and recovery of low valence vanadium, iron and chromium from sulfuric acid solution[J]. Journal of Cleaner Production, 2022,373:133640. doi: 10.1016/j.jclepro.2022.133640
    [14] Wang Zhenghao, Chen Liang, Yin Rentao, et al. Preparation of vanadyl sulfate electrolyte for vanadium flow battery from vanadium slag using calcium salt precipitation, sodium carbonate leaching and solvent extraction[J]. Hydrometallurgy, 2023,222:106146. doi: 10.1016/j.hydromet.2023.106146
    [15] Zhou Weihua, Li Zhenqin, Duan Meng, et al. Study on complexation and iron removal in vanadium slag leach solution[J]. Iron and Steel Vanadium and Titanium, 2016,37(5):20-24. (周维华, 李振溱, 段猛, 等. 钒渣浸出液中络合除铁的研究[J]. 钢铁钒钛, 2016,37(5):20-24. doi: 10.7513/j.issn.1004-7638.2016.05.004

    Zhou Weihua, Li Zhenqin, Duan Meng, et al. Study on complexation and iron removal in vanadium slag leach solution[J]. Iron and Steel Vanadium and Titanium, 2016, 37(5): 20-24. doi: 10.7513/j.issn.1004-7638.2016.05.004
    [16] Ding Dong, Yuta Maeysohi, Masaaki Kubota, et al. A facile way to synthesize carbon-coated LiMn0.7Fe0.3PO4/reduced graphene oxide sandwich-structured composite for lithium-ion batteries[J]. ACS Applied Energy Materials, 2019,2(3):1727-1733. doi: 10.1021/acsaem.8b01821
    [17] Yu Songmin, Jin Hongbo, Yang Minghu, et al. Fluorine-doped modified LiMn0.5Fe0.5PO4 cathode materials and their electrochemical properties[J]. Advances in Chemical Engineering, 2023,43(1):302-309. (于松民, 金洪波, 杨明虎, 等. 氟掺杂改性LiMn0.5Fe0.5PO4正极材料及其电化学性能[J]. 化工进展, 2023,43(1):302-309.

    Yu Songmin, Jin Hongbo, Yang Minghu, et al. Fluorine-doped modified LiMn0.5Fe0.5PO4 cathode materials and their electrochemical properties[J]. Advances in Chemical Engineering, 2023, 43(1): 302-309.
    [18] Li Gang, Dai Zhongjia, Yang Wensheng, et al. Influence of precursor particle size on the performance of LiNi0.8Co0.1Mn0.1O2 lithium ternary material[J]. Power Supply Technology, 2020,44(2):145-148. (李刚, 戴仲葭, 杨文胜, 等. 前驱体粒径对锂电三元材料LiNi0.8Co0.1Mn0.1O2性能的影响[J]. 电源技术, 2020,44(2):145-148. doi: 10.3969/j.issn.1002-087X.2020.02.001

    Li Gang, Dai Zhongjia, Yang Wensheng, et al. Influence of precursor particle size on the performance of LiNi0.8Co0.1Mn0.1O2 lithium ternary material[J]. Power Supply Technology, 2020, 44(2): 145-148. doi: 10.3969/j.issn.1002-087X.2020.02.001
    [19] Yang Hao, Fu Cuimei, Sun Yijian, et al. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient[J]. Carbon, 2020,158:102-109. doi: 10.1016/j.carbon.2019.11.067
    [20] Lin Chengliang, Zhao Meiju, Yuan Yunquan, et al. Research on the performance regulation of LiMn0.75Fe0.25PO4-based hybrid cathode materials[J]. Power Supply Technology, 2023,48(1):45-50. (蔺成良, 赵美菊, 袁云泉, 等. LiMn0.75Fe0.25PO4基混合正极材料性能调控研究[J]. 电源技术, 2023,48(1):45-50.

    Lin Chengliang, Zhao Meiju, Yuan Yunquan, et al. Research on the performance regulation of LiMn0.75Fe0.25PO4-based hybrid cathode materials[J]. Power Supply Technology, 2023, 48(1): 45-50.
    [21] Kosova Nina, Podgornova Olga, Gutakovskii Anton. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods[J]. Journal of Alloys and Compounds, 2018,742:454-465. doi: 10.1016/j.jallcom.2018.01.242
    [22] Deng Yuanfu, Yang Chunxiang, Zou Kaixiang, et al. Recent advances of Mn-rich LiFe1- yMn yPO4 (0.5 ≤ y ≤ 1.0) cathode materials for high energy density lithium ion batteries[J]. Advanced Energy Materials, 2017,7(13):10-16.
    [23] Xiao F P, Ding B, Lai O M, et al. High performance LiMn1- xFe xPO4 (0 ≤ x ≤ 1) synthesized via a facile polymer[J]. Journal of the Electrochemical Society, 2017,160(6):918-926.
    [24] Wei Xiang, Yan Junzhong, Jun Yiji, et al. Hydrothermal synthesis, evolution, and electrochemical performance of LiMn0.5Fe0.5PO4 nanostructures[J]. Physical chemistry chemical physics, 2019,17(28):29-37.
    [25] Zhou Xue, Xie Ye, Deng Yuanfu, et al. The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating[J]. Journal of Materials Chemistry A, 2014,3(3):996-1004.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  83
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回