中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA18钛合金管惯性摩擦焊接头组织与性能

成培鑫 席锦会 刘姣 石立超 张健健

成培鑫, 席锦会, 刘姣, 石立超, 张健健. TA18钛合金管惯性摩擦焊接头组织与性能[J]. 钢铁钒钛, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010
引用本文: 成培鑫, 席锦会, 刘姣, 石立超, 张健健. TA18钛合金管惯性摩擦焊接头组织与性能[J]. 钢铁钒钛, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010
Cheng Peixin, Xi Jinhui, Liu Jiao, Shi Lichao, Zhang Jianjian. Microstructure and properties of inertia friction welding joint of TA18 titanium alloy tube[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010
Citation: Cheng Peixin, Xi Jinhui, Liu Jiao, Shi Lichao, Zhang Jianjian. Microstructure and properties of inertia friction welding joint of TA18 titanium alloy tube[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 74-79. doi: 10.7513/j.issn.1004-7638.2024.06.010

TA18钛合金管惯性摩擦焊接头组织与性能

doi: 10.7513/j.issn.1004-7638.2024.06.010
基金项目: 国家重点研发计划(SQ2022YFB3700180);陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-105)。
详细信息
    作者简介:

    成培鑫,1998年出生,男,陕西渭南人,硕士,助理工程师,主要研究方向:钛合金焊接与成型,E-mail:chengpeixin01@163.com

  • 中图分类号: TF823,TG453.9

Microstructure and properties of inertia friction welding joint of TA18 titanium alloy tube

  • 摘要: 对TA18钛合金管材开展惯性旋转摩擦焊接(IRFW)研究,采用光学显微镜与扫描电镜观察了TA18钛合金管摩擦焊接头各个区域的组织形态,结合焊接过程分析了组织的特征与演化机制,根据拉伸试验、室温冲击试验、显微硬度试验等测试结果分析了焊接接头的力学性能。结果表明,由于短时间内焊接接头处发生了强烈的塑性变形,IRFW接头焊缝处的组织为针状α′相;热影响区的组织为等轴α相、部分针状α′相和残余β相。TA18钛合金管材IRFW接头的抗拉强度与母材相当,且断裂位置均位于远离焊缝中心的位置。IRFW接头显微硬度较均匀,各区域硬度匹配性好,接头具有良好的冲击韧性,达到母材的96.85%。
  • 图  1  HWI-IFW-400K型惯性摩擦焊机

    Figure  1.  Inertia rotary friction welding machine (HWI-IFW-400K model)

    图  2  试样取样位置示意

    Figure  2.  Schematic diagram of sampling location of samples

    图  3  焊接过程中主轴转速、顶锻压力和位移的变化

    Figure  3.  Spindle speed, upset pressure, and displacement during welding process

    图  4  TA18管摩擦焊接头的宏观形貌

    Figure  4.  Macromorphology of IRFW joint of TA18 tube

    图  5  TA18管摩擦焊接头横截面形貌

    Figure  5.  Cross-sectional morphology of IRFW joint of TA18 tube

    图  6  TA18管摩擦焊接头横截面显微组织

    Figure  6.  Microstructures of cross section of IRFW joint of TA18 tube

    (a)~(c) BM;(d)~(f) TMAZ; (g)~(i) WZ

    图  7  TA18管摩擦焊接接头拉伸曲线

    Figure  7.  Tensile curve of IRFW joint of TA18 tube

    图  8  TA18管摩擦焊接接头拉伸断后试样

    Figure  8.  Tensile fracture sample of IRFW joint of TA18 tube

    图  9  TA18管摩擦焊接接头显微硬度

    Figure  9.  Microhardness of IRFW joint of TA18 tube

    表  1  TA18钛合金管化学成分

    Table  1.   Chemical composition of TA18 titanium alloy tube %

    AlVFeCONHTi
    3.02.50.20.050.080.030.01Balance
    下载: 导出CSV

    表  2  TA18管惯性摩擦焊接工艺参数

    Table  2.   Processing parameters for IRFW of TA18 tube

    顶锻压力/MPa转动惯量/(kg·m2主轴转速/(r·min-1保压时间/s
    799030015
    下载: 导出CSV

    表  3  TA18管摩擦焊接头与母材的拉伸性能

    Table  3.   Tensile test result of BM and IRFW joint of TA18 tube

    试样 抗拉强度/MPa 屈服强度/MPa 断后伸长率/% 断面收缩率/%
    焊接接头1# 757 585 15.5 44
    焊接接头2# 762 586 14.5 38
    母材1# 747 635 13.5 41
    母材2# 758 651 16.0 44
    下载: 导出CSV

    表  4  TA18管摩擦焊接头与母材的冲击韧性

    Table  4.   Impact toughness of BM and IRFW joint of TA18 tube

    试样冲击功/J冲击韧性/(J·cm−2
    焊接接头1#47.378.5
    焊接接头2#45.275
    母材1#45.876
    母材2#49.882.6
    下载: 导出CSV
  • [1] Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020,39(Z1):527-534, 557-558. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020,39(Z1):527-534, 557-558.

    Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020, 39(Z1): 527-534, 557-558.
    [2] Zhao Heng, Li Lanyun, Xin Chao, et al. Application and research status of titanium alloy in oil and gas exploitation[J]. Hot Working Technology, 2023(4):1-4, 15. (赵恒, 李兰云, 辛超, 等. 钛合金在油气开采中的应用及研究现状[J]. 热加工工艺, 2023(4):1-4, 15.

    Zhao Heng, Li Lanyun, Xin Chao, et al. Application and research status of titanium alloy in oil and gas exploitation[J]. Hot Working Technology, 2023(4): 1-4, 15.
    [3] Zhang Xuesong, Chen Yongjun, Hu Junling. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018,97:22-34. doi: 10.1016/j.paerosci.2018.01.001
    [4] Zheng Pengfei, Wang Wenbo, Zhang Xiaolong, et al. The effect of heat treatment system on the structure and properties of TA18 bar[J]. Forging & Metalforming, 2022(21):53-55. (郑鹏飞, 王文波, 张晓龙, 等. 热处理制度对TA18棒材组织与性能的影响[J]. 锻造与冲压, 2022(21):53-55.

    Zheng Pengfei, Wang Wenbo, Zhang Xiaolong, et al. The effect of heat treatment system on the structure and properties of TA18 bar[J]. Forging & Metalforming, 2022(21): 53-55.
    [5] Yang Jianchao, Xi Jinhui, Yang Yashe, et al. Research and application of TA18 titanium alloy tube in aerospace industry[J]. Titanium Industry Progress, 2014,31(4):6-10. (杨建朝, 席锦会, 杨亚社, 等. 航空航天用TA18钛合金管材的研发及应用[J]. 钛工业进展, 2014,31(4):6-10.

    Yang Jianchao, Xi Jinhui, Yang Yashe, et al. Research and application of TA18 titanium alloy tube in aerospace industry[J]. Titanium Industry Progress, 2014, 31(4): 6-10.
    [6] Huang Tao, Yang Fangfang, Zhan Mei, et al. Section flattening in numerical control bending process of TA18 high strength tube[J]. Rare Metal Materials and Engineering, 2018,47(8):2347-2352. doi: 10.1016/S1875-5372(18)30190-5
    [7] Luo Dengchao, Nan Li, Yang Yashe, et al. Effect of annealing temperature on mechanical properties and microstructure of TA18 tubes[J]. Hot Working Technology, 2012,41(20):206-208. (罗登超, 南莉, 杨亚社, 等. 退火温度对TA18管材性能和组织的影响[J]. 热加工工艺, 2012,41(20):206-208.

    Luo Dengchao, Nan Li, Yang Yashe, et al. Effect of annealing temperature on mechanical properties and microstructure of TA18 tubes[J]. Hot Working Technology, 2012, 41(20): 206-208.
    [8] Li Junzhao, Yu Hang, Fan Cheng, et al. Comparative study on welding process of TA18 titanium alloy sheet[J]. Titanium Industry Progress, 2023,40(2):30-34. (李军兆, 于航, 樊程, 等. TA18钛合金板材焊接工艺对比研究[J]. 钛工业进展, 2023,40(2):30-34.

    Li Junzhao, Yu Hang, Fan Cheng, et al. Comparative study on welding process of TA18 titanium alloy sheet[J]. Titanium Industry Progress, 2023, 40(2): 30-34.
    [9] Guo Jilong, Fu Juan, Zhao Yong, et al. Study on microstructure and corrosion resistance of TA18 titanium alloy TIG welding joint[J]. Hot Working Technology, 2024(7):11-15. (郭纪龙, 付娟, 赵勇, 等. TA18钛合金TIG焊接头组织及耐腐蚀性能研究[J]. 热加工工艺, 2024(7):11-15.

    Guo Jilong, Fu Juan, Zhao Yong, et al. Study on microstructure and corrosion resistance of TA18 titanium alloy TIG welding joint[J]. Hot Working Technology, 2024(7): 11-15.
    [10] Chen Wei, Zhang Yupeng, Dong Yong, et al. Effect of laser welding parameters on microstructure and mechanical properties of titanium alloy sheet[J]. Journal of Netshape Forming Engineering, 2022,14(5):100-108. (陈伟, 张宇鹏, 董勇, 等. 激光焊接参数对钛合金薄板组织及力学性能影响[J]. 精密成形工程, 2022,14(5):100-108.

    Chen Wei, Zhang Yupeng, Dong Yong, et al. Effect of laser welding parameters on microstructure and mechanical properties of titanium alloy sheet[J]. Journal of Netshape Forming Engineering, 2022, 14(5): 100-108.
    [11] Long Jian, Zhang Linjie, Zhang Long, et al. Effect of post-welding heat treatment on microstructure and properties of electron beam welding joint of new high-strength TB18 titanium alloy[J]. Welding in the World, 2024,68(1):155-162. doi: 10.1007/s40194-023-01644-x
    [12] Zhang Chunbo, Wu Yanquan, Piao Dongguang, et al. Inertia friction welding procedure of TA19 titanium alloy[J]. Transactions of the China Welding Institution, 2018,39(12):44-48, 131. (张春波, 乌彦全, 朴东光, 等. TA19钛合金惯性摩擦焊接工艺[J]. 焊接学报, 2018,39(12):44-48, 131.

    Zhang Chunbo, Wu Yanquan, Piao Dongguang, et al. Inertia friction welding procedure of TA19 titanium alloy[J]. Transactions of the China Welding Institution, 2018, 39(12): 44-48, 131.
    [13] Zhao Zhanglong, Song Xuyang, Cao Lanchuan, et al. Effect of isothermal deforming on the microstructure and property of inertial friction welding IMI834/Ti6246 dual titanium alloy[J]. Rare Metal Materials and Engineering, 2020,49(7):2388-2392. (赵张龙, 宋旭阳, 曹澜川, 等. 等温变形对惯性摩擦焊IMI834/Ti6246双钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2020,49(7):2388-2392.

    Zhao Zhanglong, Song Xuyang, Cao Lanchuan, et al. Effect of isothermal deforming on the microstructure and property of inertial friction welding IMI834/Ti6246 dual titanium alloy[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2388-2392.
    [14] Liu Yingying, Tian Wantao, Yang Qihao, et al. Inertia radial friction welding of Ti60(near-α)/TC18(near-β) bimetallic components: Interfacial bonding mechanism, heterogenous microstructure and mechanical properties[J]. Materials Characterization, 2024,208:113598. doi: 10.1016/j.matchar.2023.113598
    [15] Ho Thi My Nu, Truyen The Le, Luu Phuong Minh, et al. A study on rotary friction welding of titanium alloy (Ti6Al4V)[J]. Advances in Materials Science and Engineering, 2019,2019(1):1-9.
    [16] Zhou Feng, Cao Yuxin, Wan Xiangliang. Effect of rare earth lanthanum addition on toughness of coarse-grained heat-affect zone of high strength low alloy steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(12):84-92. (周峰, 曹羽鑫, 万响亮. 稀土镧的添加对低合金高强钢粗晶热影响区韧性的影响[J]. 材料热处理学报, 2021, 42(12):84-92.

    Zhou Feng, Cao Yuxin, Wan Xiangliang. Effect of rare earth lanthanum addition on toughness of coarse-grained heat-affect zone of high strength low alloy steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(12): 84-92.
    [17] Wang Shiqing, Ma Tiejun, Li Wenya, et al. Microstructure and fatigue properties of linear friction welded TC4 titanium alloy joints[J]. Science and Technology of Welding and Joining, 2017,22(3):177-181. doi: 10.1080/13621718.2016.1212971
    [18] Gavalec M, Barenyi I, Krbata M, et al. The effect of rotary friction welding conditions on the microstructure and mechanical properties of Ti6Al4V titanium alloy welds[J]. Materials, 2023,16(19):6492. doi: 10.3390/ma16196492
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  106
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-30
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回