中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V含量对激光熔覆铁铬合金涂层组织结构及性能的影响

张雪峰 卿光洋 周浩然 翁刘 陈敏 赵海泉 吴博涛 张鑫

张雪峰, 卿光洋, 周浩然, 翁刘, 陈敏, 赵海泉, 吴博涛, 张鑫. V含量对激光熔覆铁铬合金涂层组织结构及性能的影响[J]. 钢铁钒钛, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012
引用本文: 张雪峰, 卿光洋, 周浩然, 翁刘, 陈敏, 赵海泉, 吴博涛, 张鑫. V含量对激光熔覆铁铬合金涂层组织结构及性能的影响[J]. 钢铁钒钛, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012
Zhang Xuefeng, Qing Guangyang, Zhou Haoran, Weng Liu, Chen Min, Zhao Haiquan, Wu Botao, Zhang Xin. Effect of V content on microstructure and properties of laser cladding Fe-Cr alloy coatings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012
Citation: Zhang Xuefeng, Qing Guangyang, Zhou Haoran, Weng Liu, Chen Min, Zhao Haiquan, Wu Botao, Zhang Xin. Effect of V content on microstructure and properties of laser cladding Fe-Cr alloy coatings[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 87-93. doi: 10.7513/j.issn.1004-7638.2024.06.012

V含量对激光熔覆铁铬合金涂层组织结构及性能的影响

doi: 10.7513/j.issn.1004-7638.2024.06.012
基金项目: 四川省自然科学基金资助项目(2022NSFSC0341);攀枝花市省级定向财力转移支付项目(22ZYZF-G-02,21ZYZF-G-01)。
详细信息
    作者简介:

    张雪峰,1965年出生,男,四川仁寿人,教授,通讯作者,长期从事钒钛材料制备方面等基础研究工作,E-mail:wzyzxf@163.com

    通讯作者:

    张雪峰,1965年出生,男,四川仁寿人,教授,通讯作者,长期从事钒钛材料制备方面等基础研究工作。E-mail:wzyzxf@163.com

  • 中图分类号: TF841.3,TG665

Effect of V content on microstructure and properties of laser cladding Fe-Cr alloy coatings

  • 摘要: 采用激光熔覆技术制备了不同V含量的铁铬合金涂层,结合金相观察、SEM & EDS、X-射线衍射等分析方法研究了V含量变化时激光熔覆铁铬合金涂层的显微组织与性能的变化规律。结果表明,V含量较低时铁铬合金涂层以树枝晶生长模式为主,涂层界面的树枝晶生长过程中Cr元素来不及完全固溶到基体中,引起基体衍射峰向高角度处偏移。增加V含量能够促进树枝晶向胞状晶转变,有效改善了Cr元素在基体中不能完全固溶的现象。VC的形成促进了凝固过程中γ-Fe向马氏体的转变,涂层硬度提升,但当V含量增加到2%时,原料中高熔点钒铁含量增加,导致涂层中气孔缺陷增加,引起涂层耐磨性能降低。当V含量为1%时涂层性能最佳。
  • 图  1  不同V含量的激光熔覆铁铬合金涂层金相组织

    (a) V-0.5中下部;(b) V-1中下部;(c) V-2中下部;(d) V-0.5中部;(e) V-1中部;(f) V-2中部

    Figure  1.  Metallographic structure of laser cladding iron-chromium alloy coatings with different V content

    图  2  不同V含量的激光熔覆铁铬合金涂层微观形貌

    (a) V-0.5上部;(b) V-1上部;(c) V-2上部;(d) V-0.5下部;(e) V-1下部;(f) V-2下部

    Figure  2.  Microscopic morphology of laser-clad iron-chromium alloy coatings with different V contents

    图  3  V-0.5铁铬合金涂层下部显微组织AB区线扫描谱

    Figure  3.  Line scan maps of microstructure in region AB of V-0.5 iron-chromium alloy coating

    图  4  V-1铁铬合金涂层上部显微组织微区面扫描图谱

    Figure  4.  Microstructure micro-area scan maps of the upper part of V-1 iron-chromium alloy coating

    图  5  不同V含量的激光熔覆铁铬合金涂层XRD衍射谱

    (a) XRD衍射图谱总图;(b) XRD衍射图谱局部放大图

    Figure  5.  XRD diffraction patterns of laser-clad iron-chromium alloy coatings with different V contents

    图  6  不同V含量的激光熔覆铁铬合金涂层显微硬度

    Figure  6.  Microhardness of laser-clad iron-chromium alloy coatings with different V contents

    图  7  不同V含量的激光熔覆铁铬合金涂层摩擦系数和磨损量

    (a) 各涂层摩擦系数曲线;(b) 各涂层磨损量

    Figure  7.  Friction coefficients and abriasion loss of laser-clad iron-chromium alloy coatings with different V contents

    图  8  不同V含量的激光熔覆铁铬合金涂层摩擦磨损形貌

    Figure  8.  Friction and wear morphology of laser cladding Fe-Cr alloy coatings with different V content

    (a) V-0.5,宏观;(b) V-1,宏观;(c) V-2,宏观;(d) V-0.5,微观;(e) V-1微观;(f) V-2,微观

    表  1  60CrMnMo基材成分

    Table  1.   Elemental composition of 60CrMnMo basic materials %

    NiCSiMnCrMoFe
    0.30.560.250.751.120.25余量
    下载: 导出CSV

    表  2  各种混合粉末的元素组成

    Table  2.   Elemental compositions of various mixed powders %

    试验样品FeVSiCrC
    V-0.587.800.501.009.701.00
    V-187.301.001.009.701.00
    V-286.302.001.009.701.00
    下载: 导出CSV
  • [1] Nie Huiwen, Zeng Songsheng, Nie Junhong, et al. Influence of VC addition amount on microstructure and properties of laser clad Fe50Mn30Cr10Co10 high-entropy alloy coating[J]. Journal of Mechanical Engineering Materials, 2023,47(4):7-11, 27. (聂辉文, 曾松盛, 聂俊红, 等. VC添加量对激光熔覆Fe50Mn30Cr10Co10高熵合金涂层组织和性能的影响[J]. 机械工程材料, 2023,47(4):7-11, 27. doi: 10.11973/jxgccl202304002

    Nie Huiwen, Zeng Songsheng, Nie Junhong, et al. Influence of VC addition amount on microstructure and properties of laser clad Fe50Mn30Cr10Co10 high-entropy alloy coating[J]. Journal of Mechanical Engineering Materials, 2023, 47(4): 7-11, 27. doi: 10.11973/jxgccl202304002
    [2] Wang Haomin, Wang Guoqing, Xiong Yangkai, et al. Microstructure and mechanical properties of laser cladded VC-Cr7C3 composite cladding layer[J]. Heat Treatment of Metals, 2022,47(11):245-252. (王皓民, 汪国庆, 熊杨凯, 等. 激光熔覆VC-Cr7C3复合熔覆层的组织与力学性能[J]. 金属热处理, 2022,47(11):245-252.

    Wang Haomin, Wang Guoqing, Xiong Yangkai, et al. Microstructure and mechanical properties of laser cladded VC-Cr7C3 composite cladding layer[J]. Heat Treatment of Metals, 2022, 47(11): 245-252.
    [3] Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of laser cladded in-situ synthesized VC reinforced Fe-Ni based composite coating[J]. Heat Treatment of Metals, 2019,44(7):190-193. (张伟, 冯秋红, 王尔亦, 等. 激光熔覆原位生成VC增强Fe-Ni基复合涂层的组织与硬度[J]. 金属热处理, 2019,44(7):190-193.

    Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of laser cladded in-situ synthesized VC reinforced Fe-Ni based composite coating[J]. Heat Treatment of Metals, 2019, 44(7): 190-193.
    [4] Lü Yufang, Xu Peng, Liang Rou, et al. Corrosion resistance of VC-reinforced Fe-based SMA coatings by laser cladding[J]. Surface Coatings Technology, 2024,478(2024):130457.
    [5] Rahman U N, Capuano L, Cabeza S, et al. Directed energy deposition and characterization of high-carbon high speed steels[J]. Additive Manufacturing, 2019, 30(2019): 1-12.
    [6] Cheng Heng, Liu Shuai, Jiang Shaoteng, et al. Effect of CeO2 on the Microstructure and properties of in situ nano-VC reinforced sub-micron Fe-based laser cladding layers[J]. Journal of Materials Engineering and Performance, 2024,33:1-11.
    [7] Shi Kao, Zhou Wenqian, Sun Yufu, et al. Effect of vanadium carbide reinforced particles on wear resistance of laser cladding Fe-Co duplex coating[J]. Journal of Thermal Spray Technology, 2023,32(1):124-134. doi: 10.1007/s11666-022-01477-y
    [8] Zhang Hui, Wu Dongting, Luan Tao, et al. Effects of graphite particle size on microstructure and properties of in-situ Ti-V carbides reinforced Fe-based laser cladding layers[J]. International Journal of Electrochemical Science, 2019, 14(3): 2208-2215.
    [9] Zhuo Yan, Li Chengxiang, Shi Xin, et al. Evaluation model of electromagnetic pulse welding effect based on Vc-β trajectory curve[J]. Journal of Materials Research and Technology, 2022,20:616-626.
    [10] Li Xuejun, Liu Ying, Zhou Tingchuan. Improvement in microstructure and wear-resistance of high chromium cast iron/medium carbon steel bimetal with high vanadium[J]. Materials Research Express, 2021, 8(4): 1-9.
    [11] Ren Yiqun, Li Liqun, Zhou Yuandong, et al. In situ synthesized VC reinforced Fe-based coating by using extreme high-speed laser cladding[J]. Materials Letters, 2022, 315: 131962.
    [12] Peng Zhiliang, Zhang Jian, Zhang Mingjun, et al. Laser in-situ preparation and mechanical properties of VC reinforced Fe-based wear-resistant composite cladding[J]. Ceramics International, 2022, 48(19): 28240-28249.
    [13] Gao Yu, Liu Ying, Wang Lu, et al. Microstructure evolution and wear resistance of laser cladded 316L stainless steel reinforced with in-situ VC-Cr7C3[J]. Surface Coatings Technology, 2022, 435: 128264.
    [14] Kirchgaßner M, Badisch E, Franek F. Behaviour of iron-based hardfacing alloys under abrasion and impact[J]. Wear, 2008,265(5):772-779.
    [15] Liang Z G, Zhan J M, Shi W Q, et al. Parameters optimization of the laser cladding of a Fe-based VC composite coating using response surface methodology (RSM)[J]. Lasers in Engineering, 2021,49:179-203.
    [16] Liu Changyu, Xu Peng, Pang Chi, et al. Phase transformation in Fe–Mn–Si SMA/WC composite coating developed by laser cladding[J]. Materials Chemistry and Physics, 2021,267:124595.
    [17] Chung R J, Tang X, Li D Y, et al. Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance[J]. Wear, 2013, 301(1-2): 695-706.
    [18] Eremin E N, Losev A, Ponomarev I A, et al. Structure and properties of the weld metal N8G6M3FTB after aging[J]. AIP Conference Proceedings, 2019, 214: 40004.
    [19] Yang Xiong, Chen Yarong, Zhang Zhenlin, et al. Study on microstructure and properties of laser-clad Fe-based (Ti, V)C composite coatings[J]. Surface Coatings Technology, 2023,464:129552.
    [20] Kannan Rajesh G, Sathiya P, Bharathi D T K, et al. Welding parameter optimization by whale optimization algorithm and experimental investigation on microstructure and mechanical properties of spin arc welded 15CDV6 HSLA steel[J]. Metals and Materials International, 2023,29(9):2743-2759. doi: 10.1007/s12540-023-01406-w
    [21] Wang Haiyang, Zhang Song, Zhang Chunhua, et al. Effects of V and Cr on laser cladded Fe-based coatings[J]. Coatings, 2018,8(3):107-118. doi: 10.3390/coatings8030107
    [22] Cao Yabin, Ma Zeming, Zhu Hao, et al. Evolution behavior regulation of carbide in Fe-based laser cladding coating[J]. Materials Research Express, 2019,6(11):116590-116590. doi: 10.1088/2053-1591/ab4c5f
    [23] Zong Weian, Zhang Song, Zhang Chunhua, et al. Preparation and characterization of in situ carbide particle reinforced Fe-based gradient materials by laser melt deposition[J]. Coatings, 2019,9(8):467-481. doi: 10.3390/coatings9080467
    [24] Wang Yanfang, Zhou Xuejing, Song Zihan, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding[J]. China Surface Engineering 2024, 37(3): 1-12. (王彦芳, 周雪景, 宋子翰, 等. 热丝激光熔覆Cr-W-Mo-V钢涂层组织与腐蚀磨损性能[J]. 中国表面工程, 2024, 37(3): 1-12.

    Wang Yanfang, Zhou Xuejing, Song Zihan, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding[J]. China Surface Engineering 2024, 37(3): 1-12.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  100
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回