中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒掺杂钴铁水滑石的制备及其析氧性能研究

曾泽华 张东彬 尹翔鹭 代宇 雍玲玲 辛亚男 滕艾均

曾泽华, 张东彬, 尹翔鹭, 代宇, 雍玲玲, 辛亚男, 滕艾均. 钒掺杂钴铁水滑石的制备及其析氧性能研究[J]. 钢铁钒钛, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014
引用本文: 曾泽华, 张东彬, 尹翔鹭, 代宇, 雍玲玲, 辛亚男, 滕艾均. 钒掺杂钴铁水滑石的制备及其析氧性能研究[J]. 钢铁钒钛, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014
Zeng Zehua, Zhang Dongbin, Yin Xianglu, Dai Yu, Yong Lingling, Xin Yanan, Teng Aijun. Research on preparation and OER properties of vanadium doped cobalt iron layered double hydroxide[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014
Citation: Zeng Zehua, Zhang Dongbin, Yin Xianglu, Dai Yu, Yong Lingling, Xin Yanan, Teng Aijun. Research on preparation and OER properties of vanadium doped cobalt iron layered double hydroxide[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 100-107. doi: 10.7513/j.issn.1004-7638.2024.06.014

钒掺杂钴铁水滑石的制备及其析氧性能研究

doi: 10.7513/j.issn.1004-7638.2024.06.014
基金项目: 国家重点研发课题“储能电池用钒基正极材料及高浓度全钒电解液制备技术”(2023YFC2908305);国家重点研发课题“钒铬中间体可控还原短程制备高附加值产品技术”(2022YFC3901004)。
详细信息
    作者简介:

    曾泽华,1994年出生,女,汉族,湖北仙桃人,硕士研究生,工程师,研究方向:纳米功能材料的制备及应用研究,E-mail:13971256774@163.com

    通讯作者:

    张东彬,1990年出生,男,汉族,福建东山人,博士研究生,工程师,研究方向:新型储能器件关键技术开发与研究, E-mail:dongbin10010619@163.com

  • 中图分类号: TF841.3

Research on preparation and OER properties of vanadium doped cobalt iron layered double hydroxide

  • 摘要: 开发环境友好且毒性相对较低的析氧反应(OER)电催化剂是目前水分解的最大困难之一。采用电沉积的方法在泡沫镍(NF)上原位生长了钴铁层状双氢氧化物(CoFe LDH)和钒掺杂的钴铁层状双氢氧化物(V-CoFe LDH)纳米片,并将其作为OER催化剂以探究其析氧性能。研究结果表明,在碱性介质中,当电流密度为100 mA·cm−2时,CoFe LDH和V-CoFe LDH的过电位分别为396 mV和356 mV,CoFe LDH和V-CoFe LDH分别具有224 mV·dec−1和210 mV·dec−1的Tafel斜率。此外,相比于CoFe LDH,V-CoFe LDH电催化剂具有大的电化学比表面积和优异的电解液润湿性。这些结果均表明V的引入有助于增强材料的OER性能。结合密度泛函理论计算和试验结果证明,V的掺杂不仅优化了材料的电子结构,增强了导电性,同样降低了吸附能,增强了催化剂与电解液的接触。
  • 图  1  CoFe LDH 和 V- CoFe LDH 的结构表征

    (a)XRD谱;(b) FT-IR谱

    Figure  1.  Structural characterization of CoFe LDH and V-CoFe LDH

    图  2  不同试样的微观形貌表征

    (a)(b)NF的SEM形貌;(c)(d) NF负载CoFe LDH的SEM形貌;(e)(f) NF负载V-CoFe LDH的SEM形貌;(g) CoFe LDH的EDS分析;(h) V-CoFe LDH的EDS分析

    Figure  2.  Micro-morphology characterization of different samples

    图  3  CoFe LDH和V-CoFe LDH的电催化性能测试

    (a)LSV 极化曲线,塔菲尔斜率;(b)(c)不同扫速下的CV 极化曲线;(d)ECSA处理;(e)电化学阻抗测试;(f)在恒电流 100 mA·cm−2下反应7.5 h 的电位-时间曲线

    Figure  3.  Electrocatalytic properties of CoFe LDH and V-CoFe LDH

    图  4  接触角测量

    Figure  4.  Contact angle measurement

      (a)KOH电解液与NF之间的接触角;(b)~(d)KOH电解液与NF负载CoFe LDH之间的接触角测试过程;(e)(f)KOH电解液与NF负载V-CoFe LDH的接触角测试过程    

    图  5  CoFe LDH和V-CoFe LDH的DFT理论计算

    (a)CoFe LDH的晶体结构模型;(b)V-CoFe LDH的晶体结构模型;(c)CoFe LDH的DOS图;(d)V-CoFe LDH的DOS图(e)CoFe LDH吸附OH的晶胞模型;(f)V-CoFe LDH吸附OH的晶胞模型

    Figure  5.  DFT calculation of CoFe LDH and V-CoFe LDH

    表  1  吸附能的DFT计算结果

    Table  1.   DFT calculation results of adsorption energy eV

    $E_{({\mathrm{Bulk-OH}}^-)} $ $E_{({\mathrm{Bulk}})} $ $E_{{\mathrm{OH}}^-} $ $E_{{\mathrm{ads}}} $
    CoFe LDH 35140.4510 34685.1275 451.0471 4.2764
    V-CoFe LDH 36853.1392 34685.1275 451.0471 7.7834
    下载: 导出CSV
  • [1] Wang Wei, Xu Xiaomin, Zhou Wei , et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting[J]. Advanced Science, 2017,4(4):1600371. doi: 10.1002/advs.201600371
    [2] Dincer I. Green methods for hydrogen production[J]. International Journal of Hydrogen Energy, 2012,37(2):1954-1971. doi: 10.1016/j.ijhydene.2011.03.173
    [3] Lei Wanying, Zhou Tong, Pang Xin, et al. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects[J]. Journal of Materials Science & Technology, 2022,114:143-164.
    [4] Hu Yiming, Wang Zhaolong, Liu Wenjun, et al. A novel cobalt-iron-vanadium layered double hydroxide nanosheets arrays toward the superior water oxidation performance[J]. ACS Sustainable Chemistry & Engineering, 2019,7(19):16828-16834.
    [5] Reier Tobias, Mehtap Oezaslan, Peter Strasser. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012,2:1765-1772. doi: 10.1021/cs3003098
    [6] Youngmin Lee, Jin Suntivich, Kevin J May, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions[J]. Journal of Physical Chemistry Letters, 2012,3:399-404. doi: 10.1021/jz2016507
    [7] Antolini Ermete. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells[J]. ACS Catalysis, 2014,4(5):1426-1440. doi: 10.1021/cs4011875
    [8] Kötz R, Lewerenz H J, Stucki S, et al. XPS studies of oxygen evolution on Ru and RuO2 anodes[J]. Journal of the Electrochemical Society, 1983,130:825-829. doi: 10.1149/1.2119829
    [9] Wang Shenggao, Wang Tao, Wang Xujie, et al. Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis[J]. International Journal of Hydrogen Energy, 2020,23(45):12629-12640.
    [10] Isabela C Man, Su Haiyan, Federico Calle Vallejo, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. Chem Cat Chem, 2011, 3(7): 1159-1165.
    [11] Long Xia, Li Jinkai, Xiao Shuang, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie(International Ed), 2014, 53(29): 7584-7588.
    [12] Long Xia, Xiao Shuang, Wang Zilong, et al. Co intake mediated formation of ultrathin nanosheet of transition metal LDH-an advanced electrocatalysts for oxygen evolution reaction[J]. Chem Commun, 2015,1(6):1120-1123.
    [13] Ding Yangyang, Du Xiaoqiang, Zhang Xiaoshuang, et al. Controllable synthesis of CoFeMo layered double hydroxide nanoarrays for promoting oxygen evolution reaction[J]. Dalton Transactions, 2020,49:15417-15424. doi: 10.1039/D0DT03182H
    [14] Gong Ming, Li Yanguang, Wang Hailiang, et al. An advanced NieFe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013,135(23):8452-8455. doi: 10.1021/ja4027715
    [15] Yu Xiaowen, Zhang Miao, Yuan Wenjing, et al. High-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation[J]. Journal of Materials Chemistry A, 2015,3(13):6921-6928. doi: 10.1039/C5TA01034A
    [16] Li Kaiyue, Guo Dong, Kang Jianyu, et al. Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery[J]. ACS Sustainable Chemistry & Engineering, 2018,6(11):14641-14651.
    [17] Yang Yang, Dang Lianna, Shearer Melinda J, et al. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction[J]. Advanced Energy Materials, 2018,8(15):1703189. doi: 10.1002/aenm.201703189
    [18] Feng Yihan, Li Zichuang, Li Shanlin, et al. One stone two birds: Vanadium doping as dual roles in self-reduced Pt clus-ters and accelerated water splitting[J]. Journal of Energy Chemistry, 2022,66:493-501. doi: 10.1016/j.jechem.2021.08.061
    [19] Wang Shenggao, Wang Tao, Wang Xujie, et al. Intercalation and elimination of carbonate ions of NiCo layered double hydroxide for enhanced oxygen evolution catalysis[J]. International Journal of Hydrogen Energy, 2020,45(23):12629-12640. doi: 10.1016/j.ijhydene.2020.02.212
    [20] Wang Bo, Gareth R Williams, Chang Zheng, et al. Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties[J]. ACS Applied Materials & Interfaces, 2014,6:16304-16311.
    [21] Wang Yuhang, Chen Long, Yu Xiaomin, et al. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets[J]. Advanced Energy Materials, 2016,7:1601390.
    [22] Tian Yang, Bi Yongming, Qin Bangchang, et al. Density functional theory investigation of oxygen evolution reaction on the NiFe-LDHs (100) surface[J]. Joural of Advances in Physical Chemistry, 2017,6(2):75-83. (田阳, 毕永民, 秦邦昌, 等. NiFe-LDHs催化氧气析出反应的密度泛函理论研究[J]. 物理化学进展, 2017,6(2):75-83. doi: 10.12677/JAPC.2017.62010

    Tian Yang, Bi Yongming, Qin Bangchang, et al. Density functional theory investigation of oxygen evolution reaction on the NiFe-LDHs (100) surface[J]. Joural of Advances in Physical Chemistry, 2017, 6(2): 75-83. doi: 10.12677/JAPC.2017.62010
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  95
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回