中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态脱碳过程中碳的扩散行为研究

祝广鹏 艾立群 洪陆阔 孟凡峻 闻莉 孙彩娇

祝广鹏, 艾立群, 洪陆阔, 孟凡峻, 闻莉, 孙彩娇. 固态脱碳过程中碳的扩散行为研究[J]. 钢铁钒钛, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017
引用本文: 祝广鹏, 艾立群, 洪陆阔, 孟凡峻, 闻莉, 孙彩娇. 固态脱碳过程中碳的扩散行为研究[J]. 钢铁钒钛, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017
Zhu Guangpeng, Ai Liqun, Hong Lukuo, Meng Fanjun, Wen Li, Sun Caijiao. Study on the diffusion behavior of carbon during solid-state decarbonization process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017
Citation: Zhu Guangpeng, Ai Liqun, Hong Lukuo, Meng Fanjun, Wen Li, Sun Caijiao. Study on the diffusion behavior of carbon during solid-state decarbonization process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(6): 127-132. doi: 10.7513/j.issn.1004-7638.2024.06.017

固态脱碳过程中碳的扩散行为研究

doi: 10.7513/j.issn.1004-7638.2024.06.017
基金项目: 河北省自然科学基金(E2021209101, E2022209112);中央引导地方科技发展资金项目(236Z1006G);河北省高等学校科学技术研究项目(ZD2022125);唐山市人才资助项目(A20220212)。
详细信息
    作者简介:

    祝广鹏,1997年出生,男,河北唐山人,硕士生,研究方向:炼钢新技术,E-mail:zgp1boy@163.com

    通讯作者:

    洪陆阔,1986年出生,男,博士,研究方向:炼钢新技术与资源综合利用,E-mail:honglk@ncst.edu.cn

  • 中图分类号: TF746,TF704.5

Study on the diffusion behavior of carbon during solid-state decarbonization process

  • 摘要: 为研究Fe-C-Mn合金薄带固态脱碳过程脱碳效果及Mn含量对C原子扩散作用,以1 mm厚的Fe-2.7%C-(5%,12%)Mn合金成分薄带为研究对象进行固态脱碳试验,利用lammps软件开展分子动力学模拟试验,探索Mn含量对C原子扩散的定性规律。结果表明:分子动力学模拟结果同固态脱碳试验结果计算扩散激活能基本一致,5%Mn在1223、1323 K和1363 K温度下脱碳试验结果和分子动力学模拟理论结果得到的C原子的扩散激活能分别为78.549 kJ·mol−1和83.805 kJ·mol−1。在1363 K进行固态脱碳试验,5%Mn和12%Mn合金薄带5~20 min主要限制性环节为内部碳扩散,12%Mn脱碳效果不如5%Mn,表明Mn含量增加对C扩散起到抑制作用。分子动力学模拟结果表明Mn含量增加会降低C原子扩散能力。
  • 图  1  不同Mn含量对应的模拟模型

    Figure  1.  Simulation models corresponding to different Mn contents

    (a)5%Mn;(c)12%Mn

    图  2  固态脱碳炉

    Figure  2.  Solid state decarburization furnace

    图  3  不同温度下薄带平均碳含量随时间变化

    Figure  3.  The mean carbon content of thin strip changes with decarburization time at different temperatures

    图  4  不同温度下C的MSD随时间变化

    Figure  4.  The MSD of C at different temperatures varies with decarburization time

    图  5  不同温度下脱碳数据拟合曲线

    Figure  5.  Fitted curves of decarbonization data at different temperatures

    图  6  不同温度下C的扩散系数

    Figure  6.  Diffusion coefficient of C at different temperatures

    图  7  脱碳试验和分子动力学模拟结果对比

    Figure  7.  Comparison of results from decarbonization experiment and molecular dynamics simulation

    图  8  不同Mn含量薄带平均碳含量随时间变化曲线

    Figure  8.  The average carbon content of strip containing different manganese varies with decarburization time

    图  9  不同Mn含量MSD随时间变化关系曲线

    Figure  9.  Relationship of MSD of strip containing different Mn with decarburization time

  • [1] Li Yaqiang, Ai Liqun. The proposal and progress of new process research on solid-state steelmaking[J]. Foundry Technology, 2017,38(1):8-11. (李亚强, 艾利群. 固态炼钢新工艺研究的提出与进展[J]. 铸造技术, 2017,38(1):8-11.

    Li Yaqiang, Ai Liqun. The proposal and progress of new process research on solid-state steelmaking[J]. Foundry Technology, 2017, 38(1): 8-11.
    [2] Hong Lukuo, Ai Liqun. New process of solid steelmaking[J]. Industrial Metrology, 2015,25(S1):161-163. (洪陆阔, 艾立群. 浅谈固态炼钢新工艺[J]. 工业计量, 2015,25(S1):161-163.

    Hong Lukuo, Ai Liqun. New process of solid steelmaking[J]. Industrial Metrology, 2015, 25(S1): 161-163.
    [3] Park J O, Long T V, Sasaki Y. Feasibility of solid-state steelmaking from cast iron decarburization of rapidly solidified cast iron[J]. ISIJ International, 2012,98(5):151-160.
    [4] Lee W H, Park J O, Lee J S, et al. Solid state steelmaking by decarburisation of rapidly solidified high carbon iron sheet[J]. Ironmaking & Steelmaking, 2012,39(7):530-534.
    [5] Sharif S E, Mirjalili M, Khaki J V. A new approach in solid state steelmaking from thin cast iron sheets through decarburization in CaCO3 pack[J]. ISIJ International, 2018,58(10):1791-1800. doi: 10.2355/isijinternational.ISIJINT-2018-250
    [6] Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization kinetics of iron-carbon alloy ribbons by gas-solid reaction in Ar-CO-CO2 atmosphere[J]. Materials Reports, 2021,35(24):24142-24146. (孙彩娇, 艾立群, 洪陆阔, 等. Ar-CO-CO2气氛下铁碳合金薄带气固反应脱碳动力学研究[J]. 材料导报, 2021,35(24):24142-24146.

    Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization kinetics of iron-carbon alloy ribbons by gas-solid reaction in Ar-CO-CO2 atmosphere[J]. Materials Reports, 2021, 35(24): 24142-24146.
    [7] Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization mechanism of Fe-C alloy in H2 / H2O atmosphere by gas-solid reaction[J]. Materials Reports, 2020,34(20):20112-20117. (孙彩娇, 艾立群, 洪陆阔, 等. H2/H2O气氛下Fe-C合金气固反应脱碳机理[J]. 材料导报, 2020,34(20):20112-20117.

    Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Decarburization mechanism of Fe-C alloy in H2 / H2O atmosphere by gas-solid reaction[J]. Materials Reports, 2020, 34(20): 20112-20117.
    [8] Chen Pengfei, Ai Liqun. Study on gas-solid reaction decarburization of medium carbon domain iron-carbon alloy ribbons[J]. Iron Steel Vanadium Titanium, 2020,41(3):105-109. (陈鹏飞, 艾立群. 中碳域铁碳合金薄带气—固反应脱碳研究[J]. 钢铁钒钛, 2020,41(3):105-109.

    Chen Pengfei, Ai Liqun. Study on gas-solid reaction decarburization of medium carbon domain iron-carbon alloy ribbons[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 105-109.
    [9] Hong Lukuo. Temperature and atmosphere control of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2015. (洪陆阔. 铁碳合金薄带气—固反应脱碳温度与气氛控制[D]. 唐山:华北理工大学2015.

    Hong Lukuo. Temperature and atmosphere control of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2015.
    [10] Cheng Rong. Kinetic analysis of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2016. (程荣. 铁碳合金薄带气—固反应脱碳动力学分析[D]. 唐山:华北理工大学, 2016.

    Cheng Rong. Kinetic analysis of gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2016.
    [11] Hou Yaobin. Decarburization of Fe-C alloy by step heating in CO-CO2 atmosphere[D]. Tangshan: North China University of Science and Technology, 2021. (侯耀斌. CO-CO2气氛下分段加热对Fe-C合金脱碳研究[D]. 唐山:华北理工大学, 2021.

    Hou Yaobin. Decarburization of Fe-C alloy by step heating in CO-CO2 atmosphere[D]. Tangshan: North China University of Science and Technology, 2021.
    [12] Lee B J. A modified embedded-atom method interatomic potential for the Fe–C system[J]. Acta Materialia, 2006,54(3):701-711. doi: 10.1016/j.actamat.2005.09.034
    [13] Kim Y M, Shin Y H, Lee B J. Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system[J]. Acta Materialia, 2009,57(2):474-482. doi: 10.1016/j.actamat.2008.09.031
    [14] Rappé A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992,114(25):10024-10035. doi: 10.1021/ja00051a040
    [15] Wang Shaogang, Liu Cuixia, Jian Zengyun. Molecular dynamics simulation of diffusion coefficient of Al-Cu alloy[J]. Journal of Xi'an Technological University, 2018,38(6):559-564. (王少刚, 刘翠霞, 坚增运. Al-Cu合金扩散系数的分子动力学模拟研究[J]. 西安工业大学学报, 2018,38(6):559-564.

    Wang Shaogang, Liu Cuixia, Jian Zengyun. Molecular dynamics simulation of diffusion coefficient of Al-Cu alloy[J]. Journal of Xi'an Technological University, 2018, 38(6): 559-564.
    [16] Li Yaqiang, Ai Liqun, Li Qiang, et al. 1 mm iron-carbon alloy strip gas-solid reaction decarburization test[J]. Iron & Steel, 2017,52(5):19-23, 35. (李亚强, 艾立群, 李强, 等. 1 mm铁碳合金薄带气—固反应脱碳试验[J]. 钢铁, 2017,52(5):19-23, 35.

    Li Yaqiang, Ai Liqun, Li Qiang, et al. 1 mm iron-carbon alloy strip gas-solid reaction decarburization test[J]. Iron & Steel, 2017, 52(5): 19-23, 35.
    [17] Li Yaqiang. Effect of atmosphere conditions on gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2017. (李亚强. 气氛条件对铁碳合金薄带气—固反应脱碳的影响[D]. 唐山:华北理工大学, 2017.

    Li Yaqiang. Effect of atmosphere conditions on gas-solid reaction decarburization of iron-carbon alloy ribbons[D]. Tangshan: North China University of Science and Technology, 2017.
    [18] Meng Fanjun, Ai Liqun, Hong Lukuo, et al. Experimental study on decarburization of Fe-C-Mn ribbons in Ar-H2O-H2 atmosphere[J]. Iron Steel Vanadium Titanium, 2021,42(5):132-137. (孟凡峻, 艾立群, 洪陆阔, 等. Ar-H2O-H2气氛下Fe-C-Mn薄带脱碳试验研究[J]. 钢铁钒钛, 2021,42(5):132-137.

    Meng Fanjun, Ai Liqun, Hong Lukuo, et al. Experimental study on decarburization of Fe-C-Mn ribbons in Ar-H2O-H2 atmosphere[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 132-137.
    [19] Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Study on solid state steelmaking from thin cast iron sheets through decarburization in H2O-H2[J]. Ironmaking & Steelmaking, 2020,47(9):1015-1021.
    [20] Král L, Million B, Čermák J. Diffusion of carbon and manganese in Fe-C-Mn[C]//Defect and Diffusion Forum. Trans Tech Publications Ltd, 2007, 263: 153-158.
  • 加载中
图(9)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  93
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 网络出版日期:  2024-12-30
  • 刊出日期:  2024-12-30

目录

    /

    返回文章
    返回