Volume 46 Issue 2
May  2025
Turn off MathJax
Article Contents
WANG Shiwei, ZHENG Hao, WANG Jinpeng, JIANG Lin. Study on the effect of vanadium source on the electrochemical performance of sodium vanadium phosphate cathode materials for sodium-ion batteries[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 76-82. doi: 10.7513/j.issn.1004-7638.2025.02.011
Citation: WANG Shiwei, ZHENG Hao, WANG Jinpeng, JIANG Lin. Study on the effect of vanadium source on the electrochemical performance of sodium vanadium phosphate cathode materials for sodium-ion batteries[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 76-82. doi: 10.7513/j.issn.1004-7638.2025.02.011

Study on the effect of vanadium source on the electrochemical performance of sodium vanadium phosphate cathode materials for sodium-ion batteries

doi: 10.7513/j.issn.1004-7638.2025.02.011
More Information
  • Received Date: 2024-07-18
    Available Online: 2025-04-30
  • Publish Date: 2025-04-30
  • A series of Na3V2(PO4)3/C anode materials were synthesized by sol-gel method, using the intermediate products ammonium polyvanadate (APV, NH4V3O8) prepared by different vanadium extraction processes and high-purity vanadium pentoxide as vanadium sources, and Na2CO3, NH4H2PO4, and citric acid as sodium, phosphorus, and carbon sources, respectively. The effects of different vanadium sources on Na3V2(PO4)3/C anode materials were investigated in detail through XRD, SEM, battery testing system and electrochemical workstation. The results show that the Na3V2(PO4)3/C (NaH-NVP) cathode materials prepared by ammonium polyvanadate from sodium method for vanadium extraction as the vanadium source present superior high-rate performance, i.e., reversible capacities of 98 mAh/g and 64 mAh/g at 5C and 10C, respectively. The research has expanded the selection of vanadium sources for synthesizing sodium vanadium phosphate materials, which has a positive significance in reducing the preparation cost of sodium vanadium phosphate.

  • loading
  • [1]
    XIE H J, ZHENG D F, LUO X, et al. Research progress on key materials for sodium ion batteries[J]. Zhejiang Chemical Industry, 2023,54(12):8-14. (谢浩杰, 郑冬芳, 罗霞, 等. 钠离子电池关键材料研究进展[J]. 浙江化工, 2023,54(12):8-14. doi: 10.3969/j.issn.1006-4184.2023.12.002

    XIE H J, ZHENG D F, LUO X, et al. Research progress on key materials for sodium ion batteries[J]. Zhejiang Chemical Industry, 2023, 54(12): 8-14. doi: 10.3969/j.issn.1006-4184.2023.12.002
    [2]
    XIANG X, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015,27(36):5343-5364. doi: 10.1002/adma.201501527
    [3]
    ROJO T, HU Y S, FORSYTH M, et al. Sodium-ion batteries[J]. Advanced Energy Materials, 2018,8(17):1800880. doi: 10.1002/aenm.201800880
    [4]
    HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017,46(12):3529-3614. doi: 10.1039/C6CS00776G
    [5]
    CHEN X, WANG Y, WIADEREK K, et al. Super charge separation and high voltage phase in NaxMnO2[J]. Advanced Functional Materials, 2018,28(50):1805105.1-1805105.12.
    [6]
    YOSHIDA H, YABUUCHI N, KOMABA S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries[J]. Electrochemistry Communications, 2013,34:60-63. doi: 10.1016/j.elecom.2013.05.012
    [7]
    MOLENDA J, BASTER D, MOLENDA M, et al. Anomaly in the electronic structure of the NaxCoO2-y cathode as a source of its step-like discharge curve[J]. Physical Chemistry Chemical Physics, 2014,16(28):14845-14857. doi: 10.1039/c3cp55223c
    [8]
    MOLENDA J, BASTER D, GUTOWSKA M U, et al. Electronic origin of the step-like character of the discharge curve for NaxCoO2-y cathode[J]. Functional Materials Letters, 2014,7(6):1440009. doi: 10.1142/S1793604714400098
    [9]
    MAO J, LIU X, LIU J, et al. P2-type Na2/3Ni1/3Mn2/3O2 cathode material with excellent rate and cycling performance for sodium-ion batteries[J]. Journal of The Electrochemical Society, 2019,166(16):A3980-A3986. doi: 10.1149/2.0211916jes
    [10]
    WU X, WU C, WEI C, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. Acs Applied Materials & Interfaces, 2016,8(8):5393.
    [11]
    MUKHERJEE A, SHARABANI T, PERELSHTEIN I, et al. Three-sodium ion activity of hollow spherical Na3V2(PO4)2F3 cathode: new aspects on high capacity and stability[J]. Batteries & Supercaps, 2019,3(1):52-55.
    [12]
    WANG D, WU Y, LÜ J, et al. Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2019,583:123957. doi: 10.1016/j.colsurfa.2019.123957
    [13]
    ZHU C, SONG K, AKEN P A V, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014,14(4):2175-2180. doi: 10.1021/nl500548a
    [14]
    WANG Y, ZHANG X, HE W, et al. A review for the synthesis methods of lithium vanadium phosphate cathode materials[J]. Journal of Materials Science: Materials in Electronics, 2017,28(24):18269-18295. doi: 10.1007/s10854-017-7834-1
    [15]
    WANG K, YAO Z C, MA B Z, et al. Current status and research progress of vanadium deposition process[J]. Hebei Metallurgy, 2023(10):1-7. (王宽, 姚志超, 马保中, 等. 沉钒工艺现状和研究进展[J]. 河北冶金, 2023(10):1-7.

    WANG K, YAO Z C, MA B Z, et al. Current status and research progress of vanadium deposition process[J]. Hebei Metallurgy, 2023(10): 1-7.
    [16]
    LIM S J, HAN D W, NAM D H, et al. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014,2(46):19623-19632. doi: 10.1039/C4TA03948C
    [17]
    WANG M Y, GUO J Z, WANG Z W, et al. Isostructural and multivalent anion substitution toward improved phosphate cathode materials for sodium-ion batteries[J]. Small, 2020,16(16):e1907645. doi: 10.1002/smll.201907645
    [18]
    SHEN W, LI H, GUO Z, et al. Improvement on high-rate performance of Mn-doped Na3V2(PO4)3/C as cathode materials for sodium ion batteries[J]. RSC Advances, 2016,6(75):71581-71588. doi: 10.1039/C6RA16515J
    [19]
    ZHU Y L. Preparation and modification of sodium vanadium phosphate positive electrode material for sodium ion batteries[D]. Harbin: Harbin Institute of Technology, 2020. (朱昱龙. 钠离子电池磷酸钛钒钠正极材料的制备及改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHU Y L. Preparation and modification of sodium vanadium phosphate positive electrode material for sodium ion batteries[D]. Harbin: Harbin Institute of Technology, 2020.
    [20]
    ZHANG B W. Preparation and sodium storage properties of Na3V2(PO4)3 as positive electrode material for sodium ion batteries[D]. Tangshan: North China University of Science and Technology, 2021. (张博文. 钠离子电池正极材料Na3V2(PO4)3的制备及储钠性能研究[D]. 唐山: 华北理工大学, 2021.

    ZHANG B W. Preparation and sodium storage properties of Na3V2(PO4)3 as positive electrode material for sodium ion batteries[D]. Tangshan: North China University of Science and Technology, 2021.
    [21]
    YAN W X, WANG X J, HAN Y, et al. Green large-scale preparation of Na3V2(PO4)3 with good rate capability and long cycling lifespan for sodium-ion batteries[J]. ACS Sustainable Chem. Eng, 2024,12(6):2394-2403. doi: 10.1021/acssuschemeng.3c07336
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (139) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return