| Citation: | REN Yuqiao, CHEN Feng, YE Endong, GUO Yufeng, ZHANG Meng, WANG Shuai, YANG Lingzhi. Study on the granulation of sub-millimeter fine-grade artificial rutile with high-speed stirring[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 83-89. doi: 10.7513/j.issn.1004-7638.2025.02.012 |
The high-speed stirring process of sub-millimeter fine-grained artificial rutile was studied in this paper. Through testing and comparison, the optimal granulation conditions were determined as follows: NA as an additive, 1.5% NA addition, 20% moisture content, a mixing speed of 300 r/min and 600 r/min for 3 and 5 minutes, respectively, and a cutting knife speed of 600 r/min. The resulting granulated products had particle sizes ranging from 0.097 mm to 0.45 mm, with particles smaller than 0.097 mm comprising less than 15% of the total. The strength of the granulated products was assessed, revealing wear indices of 8.54% after drying and 4.40% after heat treatment at
°C, indicating a significant improvement in granule strength after heat treatment. The pelletized product maintained its structural integrity in a fluidized chlorination environment. After 30 min of chlorination, the residual TiO2 content was only 12.64%, demonstrating effective chlorination performance.
| [1] |
AN Z S, CHEN Y, ZHAO W, et al. Report on China titanium industry progress in 2023[J]. Titanium Industry Progress, 2024,41(2):41-48. (安仲生, 陈岩, 赵巍, 等. 2023年中国钛工业发展报告[J]. 钛工业进展, 2024,41(2):41-48.
AN Z S, CHEN Y, ZHAO W, et al. Report on China titanium industry progress in 2023[J]. Titanium Industry Progress, 2024, 41(2): 41-48.
|
| [2] |
NGUYEN T H, LEE M S. A review on the recovery of titanium dioxide from ilmenite ores by direct leaching technologies[J]. Mineral Processing and Extractive Metallurgy Review, 2019,40(4):231-247. doi: 10.1080/08827508.2018.1502668
|
| [3] |
GÁZQUEZ M J, BOLÍVAR J P, GARCÍA-TENORIO R, et al. A review of the production cycle of titanium dioxide pigment[J]. Materials Science and Applications, 2014,5:441-458. doi: 10.4236/msa.2014.57048
|
| [4] |
MO W, DENG G Z, LUO F C. Titanium metallurgy [M]. Beijing: Metallurgical Industry Press, 1998. (莫畏, 邓国珠, 罗方承. 钛冶金[M]. 北京: 冶金工业出版社, 1998
MO W, DENG G Z, LUO F C. Titanium metallurgy [M]. Beijing: Metallurgical Industry Press, 1998.
|
| [5] |
LI Z. Research on upgrading Panzhihua-Xichang ilmenite to prepare synthetic rutile[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2021. (李哲. 攀西钛精矿提质制备人造金红石研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2021.
LI Z. Research on upgrading Panzhihua-Xichang ilmenite to prepare synthetic rutile[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2021.
|
| [6] |
LIU J. Development of study on preparation of Ti-rich raw materials for boiling chlorinated from Panzhihua titanium resources[J]. China Nonferrous Metallurgy, 2018,47(6):49-53. (刘娟. 攀枝花钛资源制备沸腾氯化用富钛原料研究进展[J]. 中国有色冶金, 2018,47(6):49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014
LIU J. Development of study on preparation of Ti-rich raw materials for boiling chlorinated from Panzhihua titanium resources[J]. China Nonferrous Metallurgy, 2018, 47(6): 49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014
|
| [7] |
ZHU F X, MA S R, MA Z S, et al. Preparation of TiCl4 from panzhihua ilmenite concentrate by boiling chlorination[J]. Journal of Materials Research and Technology, 2023,23:2703-2718. doi: 10.1016/j.jmrt.2023.01.190
|
| [8] |
BONSACK J P, SCHNEIDER F E. Entrained-flow chlorination of titaniferous slag to produce titanium tetrachloride[J]. Metallurgical Materials Transactions B 2001, 32: 389-293.
|
| [9] |
ZHANG W S, ZHU Z W, CHENG C Y. A literature review of titanium metallurgical processes[J]. Hydrometallurgy, 2011,108(3):177-188.
|
| [10] |
KAHN J A. Non-rutile feedstocks for the production of titanium[J]. JOM, 1984,36(7):33-38. doi: 10.1007/BF03338498
|
| [11] |
CHEN Q, KASOMO R M, LI H Q, et al. Froth flotation of rutile-An overview[J]. Minerals Engineering, 2021,163:106797. doi: 10.1016/j.mineng.2021.106797
|
| [12] |
LI Z, CHEN C X. Development status of global titanium resources industry[J]. Acta Geoscientica Sinica, 2021,42(2):245-250. (李政, 陈从喜. 全球钛资源行业发展现状[J]. 地球学报, 2021,42(2):245-250. doi: 10.3975/cagsb.2020.102001
LI Z, CHEN C X. Development status of global titanium resources industry[J]. Acta Geoscientica Sinica, 2021, 42(2): 245-250. doi: 10.3975/cagsb.2020.102001
|
| [13] |
HOU X L, CHEN F, ZHENG F Q, et al. Research status of granulation technology process of fine-grade rich titanium material[J]. Multipurpose Utilization of Mineral Resources, 2022(4):100-105. (侯晓磊, 陈凤, 郑富强, 等. 细粒富钛料制粒工艺技术研究现状[J]. 矿产综合利用, 2022(4):100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018
HOU X L, CHEN F, ZHENG F Q, et al. Research status of granulation technology process of fine-grade rich titanium material[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018
|
| [14] |
WANG H P. Design and optimization of fluidized reactor adapting to fine-grade rich titanium material[D]. Chongqing: Chongqing University, 2018. (王海鹏. 细粒级钛原料循环流态化工艺的模型实验及温度效应研究[D]. 重庆:重庆大学, 2018.
WANG H P. Design and optimization of fluidized reactor adapting to fine-grade rich titanium material[D]. Chongqing: Chongqing University, 2018.
|
| [15] |
CHEN X L, ZHOU X W, GAN M, et al. Study on the fluidized bed granulation of fine-grained rutile concentrate[J]. Powder Technology, 2017,315:53-59. doi: 10.1016/j.powtec.2017.03.036
|
| [16] |
YE E D, MIAO H J, CHENG X Z, et al. Fine-grained synthetic rutile pelletizing binding agent and its method of use, CN105271390B [P/OL]. (叶恩东, 缪辉俊, 程晓哲, 等. 细粒级人造金红石造粒结合剂及其使用方法, 中国: 105271390B [P/OL].
YE E D, MIAO H J, CHENG X Z, et al. Fine-grained synthetic rutile pelletizing binding agent and its method of use, CN105271390B [P/OL].
|
| [17] |
CHEN Z C, LU P, WANG J X, et al. A fine-grained titanium raw material agglomeration method, CN102776365A [P/OL]. (陈祝春, 陆平, 王建鑫, 等. 一种细粒级钛原料的团粒方法, CN102776365A [P/OL].
CHEN Z C, LU P, WANG J X, et al. A fine-grained titanium raw material agglomeration method, CN102776365A [P/OL].
|
| [18] |
JIANG X X, JIANG W, WANG S D, et al. A method of fine-grained titanium-rich material granulation, CN106319246B [P/OL]. (蒋训雄, 蒋伟, 汪胜东, 等. 细粒级富钛料造粒方法, CN106319246B [P/OL].
JIANG X X, JIANG W, WANG S D, et al. A method of fine-grained titanium-rich material granulation, CN106319246B [P/OL].
|
| [19] |
LIU X H, MING C L, LI L, et al. Experimental study on granulation of fine titanium-rich materials[J]. Ferro-Alloys, 2019,50(6):30-34. (刘祥海, 明崇伦, 李露, 等. 细粒级富钛料造粒试验研究[J]. 铁合金, 2019,50(6):30-34.
LIU X H, MING C L, LI L, et al. Experimental study on granulation of fine titanium-rich materials[J]. Ferro-Alloys, 2019, 50(6): 30-34.
|
| [20] |
CHEN F, YE E D, GUO Y F, et al. A composite binder and a granulation method used for granulation of fine-grained titanium raw material, CN202411201665.9 [P/OL] (陈凤, 叶恩东, 郭宇峰, 等. 一种用于细粒富钛料制粒的复合粘结剂、制粒方法, CN202411201665.9 [P/OL].
CHEN F, YE E D, GUO Y F, et al. A composite binder and a granulation method used for granulation of fine-grained titanium raw material, CN202411201665.9 [P/OL]
|
| [21] |
LI L, ZHU F X, DENG P, et al. Behavior of magnesium impurity during carbochlorination of magnesium-bearing titanium slag in chloride media[J]. Journal of Materials Research Technology, 2021,13:204-215. doi: 10.1016/j.jmrt.2021.04.072
|