| Citation: | WANG Xingjuan, KONG Qichang, PIAO Zhanlong, ZHU Liguang, WEI Tianshuo. Numerical simulation of slag film distribution in protective slag of ER70-Ti steel crystalliser[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(2): 127-133. doi: 10.7513/j.issn.1004-7638.2025.02.018 |
The CaO-Al2O3-TiO2-based protective slag effectively solves the problem of serious slag interface reaction in the production of ER70-Ti steel, but it is still unknown whether a liquid/solid slag film with reasonable structure can be formed. In this study, the finite element software was used to establish a heat transfer model and a slag film heat transfer model for ER70-Ti steel, to analyse the changes of liquid/solid slag film in the crystallizer and to explore the influence of process parameters on the distribution of liquid slag film. The results show that the temperature of the slag film on the billet side ranges from 777.87 to
℃ at the exit of the mould; the temperature of the slag film on the mould side is lower, ranging from 89.92 to 450.54 ℃. Along the direction of billet drawing, the thickness of liquid slag film decreases gradually, while the solid slag film thickens gradually, and the maximum thickness is up to 1.168 mm. The increase of drawing speed is conducive to the increase of the thickness of liquid slag film, and every increase of the drawing speed by 0.2 m/min, the liquid lubrication zone can be lengthened by an average of 40 mm. When the pouring temperature is increased from
to
℃, the thickness of the liquid slag film at the centre of the surface increases from 0.252 to 0.272 mm, and the liquid slag film thickness at the outlet of the crystalliser increased from 0 to 0.036 mm.
| [1] |
LIU Y Y, CHEN Z Y, JIN T N, et al. Current status and outlook of the development of high temperature titanium alloys at 600 ℃[J]. Materials Herald, 2018,32(11):1863-1869. (刘莹莹, 陈子勇, 金头男, 等. 600 ℃高温钛合金发展现状与展望[J]. 材料导报, 2018,32(11):1863-1869. doi: 10.11896/j.issn.1005-023X.2018.11.013
LIU Y Y, CHEN Z Y, JIN T N, et al. Current status and outlook of the development of high temperature titanium alloys at 600 ℃[J]. Materials Herald, 2018, 32(11): 1863-1869. doi: 10.11896/j.issn.1005-023X.2018.11.013
|
| [2] |
WANG X J, JIN H B, ZHU L G, et al. Influence of titanium content in steel on slag-gold reaction in continuous casting mould[J]. Iron and Steel, 2020,55(12):46-55. (王杏娟, 靳贺斌, 朱立光, 等. 钢中钛含量对连铸结晶器内渣金反应的影响[J]. 钢铁, 2020,55(12):46-55.
WANG X J, JIN H B, ZHU L G, et al. Influence of titanium content in steel on slag-gold reaction in continuous casting mould[J]. Iron and Steel, 2020, 55(12): 46-55.
|
| [3] |
ZHU L G, ZHANG X S, LIU Z X, et al. Analysis and control of transverse cracks on the surface of ER70-Ti steel casting billets[J]. Iron Steel Vanadium Titanium, 2020,41(3):166-171. (朱立光, 张晓仕, 刘增勋, 等. ER70-Ti钢铸坯表面横向裂纹分析及控制[J]. 钢铁钒钛, 2020,41(3):166-171. doi: 10.7513/j.issn.1004-7638.2020.03.029
ZHU L G, ZHANG X S, LIU Z X, et al. Analysis and control of transverse cracks on the surface of ER70-Ti steel casting billets[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 166-171. doi: 10.7513/j.issn.1004-7638.2020.03.029
|
| [4] |
WANG X J, WANG Y, ZHU L G, et al. Composition design of low reactivity continuous casting slag for high titanium steel[J]. Iron Steel Vanadium Titanium, 2022,43(4):134-141. (王杏娟, 王宇, 朱立光, 等. 高钛钢专用低反应性连铸保护渣成分设计[J]. 钢铁钒钛, 2022,43(4):134-141. doi: 10.7513/j.issn.1004-7638.2022.04.021
WANG X J, WANG Y, ZHU L G, et al. Composition design of low reactivity continuous casting slag for high titanium steel[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 134-141. doi: 10.7513/j.issn.1004-7638.2022.04.021
|
| [5] |
PIAO Z L, WANG X J, ZHANG C J, et al. Behaviour of steel-slag interface reaction in continuous casting crystallizer of high titanium steel[J]. Iron and Steel, 2022,57(3):61-70. (朴占龙, 王杏娟, 张彩军, 等. 高钛钢连铸结晶器内钢-渣界面反应行为[J]. 钢铁, 2022,57(3):61-70.
PIAO Z L, WANG X J, ZHANG C J, et al. Behaviour of steel-slag interface reaction in continuous casting crystallizer of high titanium steel[J]. Iron and Steel, 2022, 57(3): 61-70.
|
| [6] |
PIAO Z L. Development and metallurgical characterisation of CaO-Al2O3-TiO2 based protective slag for high titanium steel [D]. Beijing: University of Science and Technology Beijing, 2021. (朴占龙. CaO-Al2O3-TiO2基高钛钢用保护渣开发及冶金特性研究[D]. 北京: 北京科技大学, 2021.
PIAO Z L. Development and metallurgical characterisation of CaO-Al2O3-TiO2 based protective slag for high titanium steel [D]. Beijing: University of Science and Technology Beijing, 2021.
|
| [7] |
MENG Y, THOMAS B G. Heat-transfer and solidification model of continuous slab casting: CON1D[J]. Metallurgical and materials transactions B, 2003,34:685-705.
|
| [8] |
SARASWAT R, MAIJER D M. The effect of mould flux properties on thermo-mechanical behaviour during billet continuous casting[J]. ISIJ international, 1999,47(1):95-104.
|
| [9] |
HAN H N, LEE J E, YEO T J. A finite element model for 2-dimensional slice of cast strand[J]. ISIJ international, 1999,39(5):445-454. doi: 10.2355/isijinternational.39.445
|
| [10] |
CAI Z Z, ZHU M Y. Study on thermal behaviour of steel solidification process in slab continuous casting mould Ⅰ. Mathematical modelling[J]. Journal of Metals, 2011,47(6):669-675. (蔡兆镇, 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究Ⅰ. 数学模型[J]. 金属学报, 2011,47(6):669-675.
CAI Z Z, ZHU M Y. Study on thermal behaviour of steel solidification process in slab continuous casting mould Ⅰ. Mathematical modelling[J]. Journal of Metals, 2011, 47(6): 669-675.
|
| [11] |
NIU Z Y, CAI Z Z, ZHU M Y. Dynamic distributions of mold flux and air gap in slab continuous casting mold[J]. ISIJ International, 2019,59(2):283-292. doi: 10.2355/isijinternational.ISIJINT-2018-609
|
| [12] |
YANG J, CHEN D F, LONG M J, et al. An approach for modelling slag infiltration and heat transfer in continuous casting mold for high Mn–high Al steel[J]. Metals, 2019,10(1):51. doi: 10.3390/met10010051
|
| [13] |
SHAO K K. Research on cavity design of new billet continuous casting mould [D]. Qinhuangdao: Yanshan University, 2018. (邵凯凯. 新型方坯连铸结晶器腔形设计研究[D]. 秦皇岛: 燕山大学, 2018.
SHAO K K. Research on cavity design of new billet continuous casting mould [D]. Qinhuangdao: Yanshan University, 2018.
|
| [14] |
SAVAGE J, PRITCHARD W H. The problem of rupture of the billet in the continuous casting of steel[J]. Journal of the Iron and Steel Institute, 1954,178(3):269-277.
|
| [15] |
HU P H. Study on numerical calculation of protective slag slag film/air gap and its thermal resistance in crystalliser[D]. Dalian: Dalian University of Technology, 2018. (胡鹏宏. 结晶器保护渣渣膜/气隙及其热阻数值计算研究[D]. 大连: 大连理工大学, 2018.
HU P H. Study on numerical calculation of protective slag slag film/air gap and its thermal resistance in crystalliser[D]. Dalian: Dalian University of Technology, 2018.
|