| Citation: | PEI Guishang, Sammpath Kumar BHARATH, LI Zhuoyang, JIAO Mengjiao, XIANG Junyi, YAN Zhiming, LÜ Xuewei. Efficient metallurgical extraction of vanadium slag: Experimental phase diagram study and thermodynamic modeling of Na2O-K2O-V2O5 system[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 29-39, 65. doi: 10.7513/j.issn.1004-7638.2025.06.003 |
| [1] |
JUNG I H, VAN ENDE M A. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation[J]. Metallurgical and Materials Transactions B, 2020, 51(5): 1851-1874.
|
| [2] |
LIU Z K. Computational thermodynamics and its applications[J]. Acta Materialia 2020, 200: 745-792.
|
| [3] |
PEI G S, XIANG J Y, ZHONG D P, et al. Isothermal reduction of V2O5 powder using H2 as oxygen carrier: Thermodynamic evaluation, reaction sequence, and kinetic analysis[J]. Powder Technology 2021, 378: 785-794.
|
| [4] |
LEE S. A review on types of vanadium deposits and process mineralogical characteristics[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2020, 57(6): 640-651. doi: 10.32390/ksmer.2020.57.6.640
|
| [5] |
KIM S M, JEON H S. Separation processes for self-sufficient recovery of vanadium resources in Korea[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers 2019, 56(3) : 292-302.
|
| [6] |
PEI G S, PAN C, ZHONG D P, et al. Crystal structure, phase transitions, and thermodynamic properties of magnesium metavanadate (MgV2O6)[J]. Journal of Magnesium and Alloys, 2024, 12(4): 1449-1460.
|
| [7] |
PEI G S, XIANG J Y, HUANG Q Y, et al. Double pyrovanadates CaMgV2O7: Formation mechanism, phase structure, and thermodynamic properties[J]. Journal of the American Ceramic Society 2022, 105(10): 6359-6369.
|
| [8] |
PEI G S, XIANG J Y, ZHONG D P, et al. A clean process of preparing VO as LIBs anode materials via the reduction of V2O3 powder in a H2 atmosphere: Thermodynamic assessment, isothermal kinetic analysis, and electrochemistry performance evaluation[J]. Journal of Alloys and Compounds, 2020, 845: 156305. doi: 10.1016/j.jallcom.2020.156305
|
| [9] |
BAE K Y, JUNG Y H, CHO S H, et al. Design and analysis of an optimal cathode for Li-LiV3O8 secondary cells[J]. Journal of Alloys and Compounds, 2019, 784 (5) 704-711.
|
| [10] |
KÖHLER J, MAKIHARA H, UEGAITO H, et al. LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46(1): 59-65. doi: 10.1016/S0013-4686(00)00515-6
|
| [11] |
YANG G, WANG G, HOU W. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries[J]. The Journal of Physical Chemistry B, 2005, 109(22): 11186-11196.
|
| [12] |
FENG L, ZHANG W, XU L, et al. Selecting the optimal calcination conditions for preparing LiV3O8 crystal[J]. Solid State Sciences, 2020, 103: 106187.
|
| [13] |
PAN A, LIU J, ZHANG J G, et al. Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries[J]. Journal of Materials Chemistry, 2011, 21(4): 1153-1161.
|
| [14] |
QIAO Y, TU J, WANG X, et al. Self-assembled synthesis of hierarchical waferlike porous Li–V–O composites as cathode materials for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(51): 25508-25518.
|
| [15] |
CUI C J, WU G M, SHEN J, et al. Synthesis and electrochemical performance of lithium vanadium oxide nanotubes as cathodes for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(7): 2536-2541.
|
| [16] |
BALE C W, BÉLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases, 2010-2016[J]. Calphad, 2016, 54: 35-53.
|
| [17] |
PEI G S, XIANG J Y, LÜ X W, et al. High-temperature heat capacity and phase transformation kinetics of NaVO3[J]. Journal of Alloys and Compounds, 2019, 794: 465-472. doi: 10.1016/j.jallcom.2019.04.186
|
| [18] |
PEI G S, XIANG J Y, YANG L L, et al. Thermodynamic properties of sodium pyrovanadate (Na4V2O7) at high temperature (298.15~873 K)[J]. Calphad , 2020, 70: 101802.
|
| [19] |
PEI G S, XIANG J Y, YANG L L, et al. Thermodynamic properties of magnesium orthovanadate Mg3(VO4)2 at high temperatures (298.15~1473 K)[J]. Calphad, 2021, 74: 102295. doi: 10.1016/j.calphad.2021.102295
|
| [20] |
KIM D G, VAN ENDE M A, HUDON P, et al. Coupled experimental study and thermodynamic optimization of the K2O-SiO2 system[J]. Journal of Non-Crystalline Solids, 2017, 471: 51-64. doi: 10.1016/j.jnoncrysol.2017.04.029
|
| [21] |
PELTON A D, DEGTEROV S A, ERIKSSON G. The modified quasichemical model I—Binary solutions[J]. Metallurgical and Materials Transactions B, 2000, 31(4): 651-659.
|
| [22] |
PELTON A D, CHARTRAND P. The modified quasi-chemical model: Part II. Multicomponent solutions[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1355-1360. doi: 10.1007/s11661-001-0226-3
|
| [23] |
CAO Z, WANG N, XIE W, et al. Critical evaluation and thermodynamic assessment of the MgO-V2O5 and CaO-V2O5 systems in air[J]. Calphad, 2017, 56: 72-79. doi: 10.1016/j.calphad.2016.12.001
|
| [24] |
HUDON P, JUNG I H. Critical evaluation and thermodynamic optimization of the CaO-P2O5 system[J]. Metallurgical and Materials Transactions B, 2015, 46(1) (2015) 494-522.
|
| [25] |
CHEN Y Q, LEI L, REN Q, et al. Phase relations in the ZnO-V2O5-K2O system[J]. Chinese Physics B, 2011, 20(7): 076402. doi: 10.1088/1674-1056/20/7/076402
|
| [26] |
KELMERS A D. Compounds in the system KVO3-V2O5[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 23(3): 279-283.
|
| [27] |
GLAZYRIN M P, FOTIEV A A. Phase composition and some features of the vanadium pentoxide-sodium metavanadate system[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1968, 4(1): 82-87.
|
| [28] |
KOLTA G A, HEWAIDY I F. Phase diagrams of binary systems vanadium oxide-sodium carbonate and vanadium oxide-sodium sulfate [J]. Thermochim. Acta, 1972, 25(7): 327-330.
|
| [29] |
DANCK V, MATIASOVSKY K, BALAJKA J. Study of the system V2O5-Na2O[J]. Chemicke Zvesti, 1973, 27(6): 748-751.
|
| [30] |
VOLKOV F A, VALIKHANOVA V L, Valikhanova N K. Vanadium pentoxide-sodium metavanadate system[J]. Zhurnal Neorganicheskoi Khimii, 1975, 2(20): 497-500.
|
| [31] |
FLOOD S H, VANADYL H. Vanadate, a new type of semiconductor. the system Na2O-V2O5[J]. Tidsskrift for Kjemi Bergvesen og Metallurgi 3 (1943): 55-59.
|
| [32] |
ILLARIONOV V V, OZEROV R P, KILDILDISHEVA E V. Phase diagrams for the system V2O5-Na2SO4 and V2O5-NaVO3[J]. Zhurnal Neorganicheskoi Khimii, 2 (1957): 883-889.
|
| [33] |
KERBY R, WILSON J. Solid–liquid phase equilibria for the ternary systems V2O5–Na2O–Fe2O3, V2O5–Na2O–Cr2O3, and V2O5–Na2O–MgO[J]. Canadian Journal of Chemistry, 1973, 51(7): 1032-1040. doi: 10.1139/v73-153
|
| [34] |
LÜ X W, PEI G S, ZHONG D P, et al. Phase equilibrium of the V2O5–Na2O system[J]. Metallurgical and Materials Transactions B, 2022, 53(4): 2695-2703. doi: 10.1007/s11663-022-02560-z
|
| [35] |
SLOBODIN B, FOTIEY A. Phase composition and some features of the vanadium pentoxide-sodium metavanadate system[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1968, 4(1): 82-87.
|
| [36] |
DANEK V, VOTAVA I, MATIASOVSKY K. Study of the system V2O5-Na2O. Ⅱ[J]. Chemicke Zvesti, 1974 28(6): 728-732.
|
| [37] |
GOLOVKIN B, KRISTALLOV L, KRUCHININA M. Phase diagram of NaVO3-Na4V2O7 system[J]. Zhurnal Neorganicheskoj Khimii, 1995, 40(3): 514-518.
|
| [38] |
CANNERI G. Sui vanadicovanadati[J]. Gazz. chim. ital, 1928, 58 : 6.
|
| [39] |
HOLTZBERG F, REISMAN A, BERRY M. Reactions of the group VB pentoxides with alkali oxides and carbonates. II. phase diagram of the system K2CO3-V2O5[J]. Journal of the American Chemical Society, 1956, 78(8): 1536-1540. doi: 10.1021/ja01589a007
|
| [40] |
KATO A, MOCHIDA I, SEIYAMA T. X-Ray powder patterns of K2O.4V2O5 and K2O.V2O4.8V2O5[J]. Analytica Chimica Acta, 1971, 54(1): 168-170.
|
| [41] |
ILLARIONOV V, OZEROV R, KILDISHEVA E. The system K2O-V2O5 in the region KVO3-V2O5[J]. Journal of Inorganic Chemistry -USSR, 1956, 1(4): 177-182.
|
| [42] |
BLOCK S. The Crystal Structure of K2V6O16[D]. Baltimore: Johns Hopkins University, 1955.
|
| [43] |
KELMERS A D. Ammonium, potassium, rubidium and cesium hexavanadates[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 21(1): 45-48.
|
| [44] |
EVANS H T, BLOCK S. The crystal structures of potassium and cesium trivanadates[J]. Inorganic Chemistry, 1966, 5(10): 1808-1814. doi: 10.1021/ic50044a037
|
| [45] |
OKA Y, YAO T, YAMAMOTO N. Hydrothermal synthesis and structure refinements of alkali-metal trivanadates AV3O8 (A = K, Rb, Cs)[J]. Materials Research Bulletin, 1997, 32(9): 1201-1209. doi: 10.1016/S0025-5408(97)00096-2
|
| [46] |
PEI G S. Thermodynamic modeling of CaO-MgO-R2O-V2O5 (R=Li, Na, K, Rb, and Cs) system and its applications[D]. Chongqing: Chongqing University, 2023.
|
| [47] |
SABROWSKY H, SCHRÖER U. Darstellung und kristallstruktur von KNaO und RbNaO/Preparation and crystal structure of KNaO and RbNaO[J]. Zeitschrift für Naturforschung B, 1982, 37(7): 818-819.
|
| [48] |
SABROWSKY H, SCHRÖER U. Darstellung und kristallstruktur von KNaO und RbNaO[J]. Naturforsch, 1982, 37b: 818-819.
|
| [49] |
BELGHIT R, BELKHIR H, HECIRI D, et al. First principles study of structural, mechanical and electronic properties of the ternary alkali metal oxides KNaO and RbNaO[J]. Chemical Physics Letters, 2018, 706: 684-693. doi: 10.1016/j.cplett.2018.07.013
|
| [50] |
SAMOILOVA O, MAKROVETS L, TROFIMOV E. Thermodynamic simulation of the phase diagram of the Cu2O–Na2O–K2O system[J]. Moscow University Chemistry Bulletin . 2018, 73(3): 105-110.
|
| [51] |
BELYAEV T. System NaVO3-KVO3[J]. Zh. Neorg. Khimi 13(6) (1968) 1642-1644.
|
| [52] |
GLAZYRIN M, IVAKIN A, YATSENKO A. Phase diagram of the NaVO3-KVO3 system[J]. Zhurnal Neorganicheskoj Khimii, 1972, 17(2): 536-538.
|
| [53] |
PERRAUD J. Crystallization of simple or double alkaline (Na+, K+ and Cs+) Metavandates[J]. Revue de Chimie MINERALE 11(3) (1974) 302-326.
|
| [54] |
БУБНОВА Р, ФИЛАТОВ С, ГРЕБЕНЩИКОВ Р. Изучение диаграмм состояния методом терморентгенографии на примере системы NaVO3-KVO3[J]. J ДАН СССР 292(1) (1987) 107.
|
| [55] |
LEITNER J, VOŇKA P, SEDMIDUBSKÝ D, et al. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides[J]. Thermochimica Acta, 2010, 497(1-2): 7-13. doi: 10.1016/j.tca.2009.08.002
|
| [56] |
KOEHLER M F. Heats of formation of three sodium vanadates[M]. US Department of the Interior, Bureau of Mines, 1960: 230.
|
| [57] |
BERTRAND G L, HEPLER L G. Thermochemistry of ammonium metavanadate and sodium metavanadate[J]. Journal of Chemical Engineering Data, 1967, 12(3): 412-413. doi: 10.1021/je60034a032
|
| [58] |
KING E G, WELLER W W. Low temperature heat capacities and entropies at 298.15 K of three sodium vanadates, US Government Printing Office, 1961.
|
| [59] |
KHODOS M Y, SLOBODIN B, FOTIEV A, et al. Enthalpy of formation of potassium vanadates[J]. Izv. Akad. Nauk SSSR, Neorg. Mater, 1980, 16(3): 502-504.
|
| [60] |
VDOVIN V, EDIL’BAEV A, KOZLOV V, et al. Thermodynamic analysis of the reaction of vanadium oxides with oxides of sodium, potassium, calcium, barium, and manganese[J]. Steel in Translation, 2007, 37(9): 787-791.
|
| [61] |
WHITE M, PARK Y, SHURVELL H, et al. The heat capacity of KVO3 from 25 to 310 K[J]. The Journal of Chemical Thermodynamics, 1987, 19(7): 765-769.
|
| [62] |
PEI G S, JIN X, JIAO M J, et al. Phase transitions, lattice dynamics, thermal transport, and thermodynamic properties of Mg2V2O7 from experiments and first-principle calculations[J]. Journal of Magnesium and Alloys, 2025, 13(8): 3632-3641. doi: 10.1016/j.jma.2023.11.013
|
| [63] |
XIANG J Y, HUANG Q Y, LÜ X W, et al. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag[J]. Journal of Hazardous Materials, 2017, 336: 1-7. doi: 10.1016/j.jhazmat.2017.04.060
|