Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
CAO Shuai, XIANG Junyi, HUANG Qingyun, SHEN Biao, HE Wenyi, WEI Linsen, LÜ Xuewei. Efficient metallurgical extraction of vanadium slag: Sodium-magnesium composite roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 40-46. doi: 10.7513/j.issn.1004-7638.2025.06.004
Citation: CAO Shuai, XIANG Junyi, HUANG Qingyun, SHEN Biao, HE Wenyi, WEI Linsen, LÜ Xuewei. Efficient metallurgical extraction of vanadium slag: Sodium-magnesium composite roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 40-46. doi: 10.7513/j.issn.1004-7638.2025.06.004

Efficient metallurgical extraction of vanadium slag: Sodium-magnesium composite roasting vanadium extraction process

doi: 10.7513/j.issn.1004-7638.2025.06.004
More Information
  • Received Date: 2025-04-07
  • Accepted Date: 2025-05-07
  • Rev Recd Date: 2025-04-28
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • Alkaline earth metals can easily form water-insoluble calcium/magnesium vanadates during sodium roasting of vanadium slag, leading to a decrease in vanadium recovery rate. However, the moderate MgO addition facilitates the formation of a highly soluble sodium-magnesium vanadate (Na6Mg2V4O15). Based on this discovery, we propose an innovative sodium-magnesium composite roasting process for the vanadium extraction from vanadium slag. Experimental results reveal that Na6Mg2V4O15 exhibits superior dissolution performance under the alkaline leaching conditions (pH~11) of the typical sodium-roasted vanadium slag. The highest vanadium leaching efficiency of 85.30% is obtained under the conventional sodium roasting conditions (20% Na2CO3 dosage, 875 ℃). By using the composite roasting process with 3% MgO addition, the Na2CO3 dosage is reduced to 18% and the leaching rate is increase to 90.38%. Phase composition analysis of the roasted samples and leached residues indicates that composite roasting promotes the formation of sodium-magnesium vanadate and its subsequent dissolution. This cost-effective strategy of partially substituting sodium salts with magnesium salts provides a novel approach for optimizing conventional sodium roasting processes, leading to the reduction of costs and increase of efficiency in the sodium vanadium extraction process.
  • loading
  • [1]
    DONG Z H, YANG R L, YANG R C, et al. Research progress on the comprehensive utilization of converter vanadium slag[J]. Sustainable Mining and Metallurgy, 2024, 40(4): 18-23,31. (董自慧, 杨瑞兰, 杨瑞臣, 等. 转炉钒渣综合利用研究进展[J]. 绿色矿冶, 2024, 40(4): 18-23,31.

    DONG Z H, YANG R L, YANG R C, et al. Research progress on the comprehensive utilization of converter vanadium slag[J]. Sustainable Mining and Metallurgy, 2024, 40(4): 18-23,31.
    [2]
    GAO F, OLAVIWOLA A U, LIU B, et al. Review of vanadium production part I: primary resources[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(4): 466-488. doi: 10.1080/08827508.2021.1883013
    [3]
    NASIMIFAR A, MEHRABANI J V. A review on the extraction of vanadium pentoxide from primary, secondary, and co-product sources[J]. International Journal of Mining and Geo-Engineering, 2022, 56(4): 361-382.
    [4]
    JIA L, ZHANG Y, TAO L, et al. A methodology for assessing cleaner production in the vanadium extraction industry[J]. Journal of Cleaner Production, 2014, 84: 598-605. doi: 10.1016/j.jclepro.2013.05.016
    [5]
    SIMANDL G J, PARADIS S. Vanadium as a critical material: economic geology with emphasis on market and the main deposit types[J]. Applied Earth Science, 2022, 131(4): 218-236. doi: 10.1080/25726838.2022.2102883
    [6]
    RODBY K E, JAFFE R L, OLIVETTI E A, et al. Materials availability and supply chain considerations for vanadium in grid-scale redox flow batteries[J]. Journal of Power Sources, 2023, 560: 232605. doi: 10.1016/j.jpowsour.2022.232605
    [7]
    BLEECKER W F. Process of producing copper, lead, or iron vanadate from vanadiferous ores: U. S. Patent 1, 015, 469[P]. 1912-1-23.
    [8]
    JENA P K, BROCCHI E A. Halide metallurgy of refractory metals[J]. Mineral Processing and Extractive Metullargy Review, 1992, 10(1): 29-40. doi: 10.1080/08827509208914073
    [9]
    LI H Y, FANG H X, WANG K, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015, 156: 124-135. doi: 10.1016/j.hydromet.2015.06.003
    [10]
    LI L J, CHEN D H, BAI R G, et al. Research progress of extraction technology for vanadium & chromium from vanadium slags[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 7-11. (李兰杰, 陈东辉, 白瑞国, 等. 钒渣中钒铬提取技术研究进展[J]. 矿产综合利用, 2013(2): 7-11. doi: 10.3969/j.issn.1000-6532.2013.02.003

    LI L J, CHEN D H, BAI R G, et al. Research progress of extraction technology for vanadium & chromium from vanadium slags[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 7-11. doi: 10.3969/j.issn.1000-6532.2013.02.003
    [11]
    WANG Y. Low-temperature reduction degradation behavior of vanadium-titanium pellet in H2-CO mixtures[D]. Chongqing: Chongqing University, 2022. (王月. H2-CO作用下钒钛矿球团低温还原粉化行为研究[D]. 重庆: 重庆大学, 2022.

    WANG Y. Low-temperature reduction degradation behavior of vanadium-titanium pellet in H2-CO mixtures[D]. Chongqing: Chongqing University, 2022.
    [12]
    JIN E G, ZHOU Y, CHEN J, et al. Research progress on treatment and resource utilization technology of manure and sewage in dairy farm[J]. Animal Husbandry and Feed Science, 2019, 41(1): 82-87. (金尔光, 周源, 陈洁, 等. 奶牛场粪污处理与资源化利用技术研究进展[J]. 畜牧与饲料科学, 2020, 41(1): 82-87.

    JIN E G, ZHOU Y, CHEN J, et al. Research progress on treatment and resource utilization technology of manure and sewage in dairy farm[J]. Animal Husbandry and Feed Science, 2019, 41(1): 82-87.
    [13]
    HU P W, XIE Z C, HU B, et al. Comprehensive utilization status and development of vanadium-bearing solid wastes[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 144-152. (胡佩伟, 谢志诚, 胡兵, 等. 含钒固废综合利用现状及发展[J]. 矿产保护与利用, 2020, 40(5): 144-152.

    HU P W, XIE Z C, HU B, et al. Comprehensive utilization status and development of vanadium-bearing solid wastes[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 144-152.
    [14]
    WANG X. Study on extraction of vanadium from vanadium slag through composite roasting with CaO/MgO and acid leaching process[D]. Chongqing: Chongqing University, 2022. (王鑫. 钒渣钙镁复合焙烧—酸浸提钒工艺研究[D]. 重庆: 重庆大学, 2022.

    WANG X. Study on extraction of vanadium from vanadium slag through composite roasting with CaO/MgO and acid leaching process[D]. Chongqing: Chongqing University, 2022.
    [15]
    WEN J, JIANG T, XU Y, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of industrial and engineering chemistry, 2019, 71: 327-335. doi: 10.1016/j.jiec.2018.11.043
    [16]
    LI M, XIAO L, LIU J J, et al. Effective extraction of vanadium and chromium from high chromium content vanadium slag by sodium roasting and water leaching[C]//Materials Science Forum. Trans Tech Publications Ltd., 2016, 863: 144-148.
    [17]
    YIN Z Q, LI Q W, FU Z B, et al. Technology research on sodium salt roasting of vanadium slag pellet[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 12-15, 20. (殷兆迁, 李千文, 付自碧, 等. 钒渣钠化球团化焙烧技术研究[J]. 钢铁钒钛, 2016, 37(1): 12-15, 20. doi: 10.7513/j.issn.1004-7638.2016.01.003

    YIN Z Q, LI Q W, FU Z B, et al. Technology research on sodium salt roasting of vanadium slag pellet[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 12-15, 20. doi: 10.7513/j.issn.1004-7638.2016.01.003
    [18]
    LI W. Study on the reaction behavior in sodium roasting of high vanadium slag[D]. Shenyang: Northeastern University, 2014. (李尉. 高钒渣钠化焙烧反应行为研究[D]. 沈阳: 东北大学, 2014.

    LI W. Study on the reaction behavior in sodium roasting of high vanadium slag[D]. Shenyang: Northeastern University, 2014.
    [19]
    YANG M, YANG H, TIAN S, et al. Effect of mechanical activation on extraction of vanadium from chromium-containing vanadate solution by calcification and carbonization[J]. Hydrometallurgy, 2021, 201: 105591. doi: 10.1016/j.hydromet.2021.105591
    [20]
    LIU D, XUE X X, YANG H. Reaction mechanism of magnesium in roasting of vanadium slag[J]. Anais da Academia Brasileira de Ciências, 2020, 92(2): e20181062.
    [21]
    PEI G S. Thermodynamic modeling of CaO-MgO-R2O-V2O5 (R=Li, Na, K, Rb, and Cs) systems and its applications[D]. Chongqing: Chongqing University, 2023. (裴贵尚. CaO-MgO-R2O-V2O5(R=Li、Na、K、Rb和Cs)体系热力学模型构建及其应用[D]. 重庆: 重庆大学, 2023.

    PEI G S. Thermodynamic modeling of CaO-MgO-R2O-V2O5 (R=Li, Na, K, Rb, and Cs) systems and its applications[D]. Chongqing: Chongqing University, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (36) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return