Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
JIA Meili, WANG Baohua, DU Hao, HU Feifei, LIU Jinyu, QI Jian, ZHAO Beibei. Collaborative control of impurities in preparation of high-purity ammonium metavanadate by transition method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 47-56. doi: 10.7513/j.issn.1004-7638.2025.06.005
Citation: JIA Meili, WANG Baohua, DU Hao, HU Feifei, LIU Jinyu, QI Jian, ZHAO Beibei. Collaborative control of impurities in preparation of high-purity ammonium metavanadate by transition method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 47-56. doi: 10.7513/j.issn.1004-7638.2025.06.005

Collaborative control of impurities in preparation of high-purity ammonium metavanadate by transition method

doi: 10.7513/j.issn.1004-7638.2025.06.005
More Information
  • Received Date: 2025-04-08
  • Accepted Date: 2025-05-16
  • Rev Recd Date: 2025-05-08
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • In response to the issues of lengthy process and high cost associated with traditional ammonium metavanadate preparation methods, this study proposes an innovative approach based on the pH-dependent speciation transformation characteristics of vanadate ions. By precisely controlling the pH of the medium, direct conversion of decavanadate (V10O286−) to metavanadate (VO3) was achieved. During this process, impurity elements (Na, K, Cr, As) were effectively removed through their transformation into ionic forms (Na+, K+, CrO42−, HAsO42−) in the solution phase, enabling simultaneous impurity control in ammonium metavanadate preparation. The effects of transformation temperature, pH, and liquid-to-solid ratio on vanadium recovery and product purity were systematically investigated. Experimental results demonstrated that complete conversion of V10O286− to VO3 could be achieved at pH monstrated that complete conversiwere found to favor the crystallization of ammonium metavanadate, thereby enhancing vanadium recovery. While increasing the liquid-to-solid ratio improved conversion efficiency, excessive ratios led to reduced vanadium recovery and resource wastage. Through optimization experiments, the optimal process parameters were set: reaction temperature of 30 ℃, pH of 8.5, and liquid-to-solid ratio of 7–10. Under these conditions, industrial-grade ammonium decavanadate with 98% purity was directly converted to crystallized ammonium metavanadate, yielding a product with 99.75% purity and achieving a vanadium recovery rate of 90.67%. This method successfully realized one-step preparation of ammonium metavanadate with purity of 99.5%. This method significantly simplifies the traditional process flow and provides a new technical approach for the efficient preparation of high-purity ammonium metavanadate.
  • loading
  • [1]
    KONG H Y, XIE Q F, WU C L, et al. Vanadium-based alloy for hydrogen storage: a review[J]. Rare Metals, 2024, 43(12): 6201-6232. doi: 10.1007/s12598-024-02839-x
    [2]
    WANG J, YU W H, XIANG J Y, et al. Toward high-purity vanadium-based materials: Fundamentals, purifications, and perspectives[J]. Journal of Cleaner Production, 2024, 476: 143721. doi: 10.1016/j.jclepro.2024.143721
    [3]
    SUN Q Q, CHEN Z X, YANG Z Y, et al. Amorphous vanadium oxide loaded by metallic nickel-copper towards high-efficiency electrocatalyzing hydrogen production[J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. (孙强强, 陈子璇, 杨子玥, 等. 金属镍铜钒氧化物的高效电解产氢性能[J]. 无机材料学报, 2023, 38(6): 647-655.

    SUN Q Q, CHEN Z X, YANG Z Y, et al. Amorphous vanadium oxide loaded by metallic nickel-copper towards high-efficiency electrocatalyzing hydrogen production[J]. Journal of Inorganic Materials, 2023, 38(6): 647-655.
    [4]
    WANG C, LI L J, DU H. Cleaner production of 3.5 valent vanadium electrolyte from ammonium metavanadate by ammonia reduction-sulfuric acid dissolution method[J]. Tungsten, 2024, 6(3): 555-560. doi: 10.1007/s42864-023-00249-7
    [5]
    XIANG J Y, BAI L W, LU X, et al. Selective recovery of vanadium from high-chromium vanadium slag by a mechanically activated low-sodium salt roasting-water leaching process[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111304. doi: 10.1016/j.jece.2023.111304
    [6]
    ZHENG H W, LI Q N, LING Y Q, et al. Research on microwave drying technology in the procedure of preparation of V2O5 from ammonium polyvanadate (APV)[J]. Advanced Powder Technology, 2021, 32(7): 2530-2542. doi: 10.1016/j.apt.2021.05.027
    [7]
    PU J, GAO L, YANG Z, et al. The application of microwave irradiation technology on the preparation of V2O5 from ammonium polyvanadate (APV)[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109: 1-7. doi: 10.1016/j.jtice.2020.02.010
    [8]
    CHEN X M, LI H Y, WEI C C, et al. Selective chemical etching of vanadium slag enables highly efficient and clean extraction of vanadium[J]. Acs Sustainable Chemistry & Engineering, 2025, 13(3): 1327-1335.
    [9]
    AN Y R, MA B Z, ZHOU Z E, et al. Extraction of vanadium from vanadium slag by sodium roasting-ammonium sulfate leaching and removal of impurities from weakly alkaline leach solution[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110458. doi: 10.1016/j.jece.2023.110458
    [10]
    WEN J, JIANG T, XU Y Z, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 327-335. doi: 10.1016/j.jiec.2018.11.043
    [11]
    GUO Y, LI H Y, CHENG J, et al. Highly efficient separation and recovery of Si, V, and Cr from V-Cr-bearing reducing slag[J]. Separation and Purification Technology, 2021, 263: 118296.
    [12]
    FENG G S. Optimization and study on process parameters for preparation of high quality ammonium polyvanadate[J]. World Nonferrous Metals, 2020(24): 148-149. (冯国晟. 制备高品质多钒酸铵工艺参数优化与研究[J]. 世界有色金属, 2020(24): 148-149. doi: 10.3969/j.issn.1002-5065.2020.24.069

    FENG G S. Optimization and study on process parameters for preparation of high quality ammonium polyvanadate[J]. World Nonferrous Metals, 2020(24): 148-149. doi: 10.3969/j.issn.1002-5065.2020.24.069
    [13]
    FOUDA M, SALEH H, ABD-ELZAHER M, et al. The reactivity of products of thermal interaction between ammonium vanadate and potassium sulfite as catalysts for oxidation of sulfur dioxide[J]. Applied Catalysis A: General, 2002, 223(1-2): 11-27. doi: 10.1016/S0926-860X(01)00661-5
    [14]
    ZENG S Q, WANG J Y, LI P F, et al. Structural design of screw conveyor for viscous material such as ammonium metavanadate[J]. Soda Industry, 2024(2): 22-24. (曾帅强, 王建业, 李鹏飞, 等. 偏钒酸铵等黏性物料用螺旋输送机结构设计[J]. 纯碱工业, 2024(2): 22-24. doi: 10.3969/j.issn.1005-8370.2024.02.008

    ZENG S Q, WANG J Y, LI P F, et al. Structural design of screw conveyor for viscous material such as ammonium metavanadate[J]. Soda Industry, 2024(2): 22-24. doi: 10.3969/j.issn.1005-8370.2024.02.008
    [15]
    KOKKO M, HU T, LASSI U, et al. A study of direct NH4VO3 crystallization from dilute V solutions and the effect of impurities (Fe, Mn) on crystallization[J]. Waste and Biomass Valorization, 2025, 1-14.
    [16]
    KOKKO M, KAUPPINEN T, HU T, et al. Two-stage leaching of calcium and vanadium from high-calcium steelmaking slag[J]. Environmental Technology, 2024, 45(27): 5966-5981. doi: 10.1080/09593330.2024.2316671
    [17]
    LI Q G, ZHANG Q X, ZENG L, et al. Removal of vanadium from ammonium molybdate solution by ion exchange[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 735-739. doi: 10.1016/S1003-6326(08)60342-8
    [18]
    JING X H, WANG J Y, CAO H B, et al. Rapid selective extraction of V(V) from leaching solution using annular centrifugal contactors and stripping for NH4VO3[J]. Separation and Purification Technology, 2017, 187: 407-414. doi: 10.1016/j.seppur.2017.06.078
    [19]
    WANG S N, DU H, ZHENG S L, et al. New technology from sodium vanadate to vanadium oxide by calcification and carbonization-ammonium process[J]. CIESC Journal, 2017, 68(7): 2781-2789. (王少娜, 杜浩, 郑诗礼, 等. 钒酸钠钙化-碳化铵沉法清洁制备钒氧化物新工艺[J]. 化工学报, 2017, 68(7): 2781-2789. doi: 10.11949/j.issn.0438-1157.20161511

    WANG S N, DU H, ZHENG S L, et al. New technology from sodium vanadate to vanadium oxide by calcification and carbonization-ammonium process[J]. CIESC Journal, 2017, 68(7): 2781-2789. doi: 10.11949/j.issn.0438-1157.20161511
    [20]
    JIA M L, DU H, ZHANG Y, et al. Research on the vanadium extraction from deactivated sulfuric acid catalyst featured with two-step and selectively[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 9-16. (贾美丽, 杜浩, 张懿, 等. 失活硫酸催化剂两步法选择性清洁提钒研究[J]. 钢铁钒钛, 2024, 45(5): 9-16. doi: 10.7513/j.issn.1004-7638.2024.05.002

    JIA M L, DU H, ZHANG Y, et al. Research on the vanadium extraction from deactivated sulfuric acid catalyst featured with two-step and selectively[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 9-16. doi: 10.7513/j.issn.1004-7638.2024.05.002
    [21]
    WANG S N, DU H, JIA M L, et al. Study advances on preparation technology of high purity V2O5[J]. Hebei Metallurgy, 2021(8): 9-15. (王少娜, 杜浩, 贾美丽, 等. 高纯V2O5制备工艺研究进展[J]. 河北冶金, 2021(8): 9-15.

    WANG S N, DU H, JIA M L, et al. Study advances on preparation technology of high purity V2O5[J]. Hebei Metallurgy, 2021(8): 9-15.
    [22]
    AURELIANO M, CRANS D. Decavanadate (V10O286−) and oxovanadates: Oxometalates with many biological activities[J]. Journal of Inorganic Biochemistry, 2009, 103(4): 536-546. doi: 10.1016/j.jinorgbio.2008.11.010
    [23]
    LI H D, SONG H, YANG Y K, et al. One-time removal of V(Ⅴ) and Cr(Ⅵ) from aqueous solution of different pH by sulphate green rust: The overlooked adsorption and reactivity of Fe (Ⅲ)-Cr(Ⅲ) oxides[J]. Separation and Purification Technology, 2025, 354.
    [24]
    KEIM M, MARKL G. Formation of galena pseudomorphs after pyromorphite[J]. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 2017, 194(3): 209-226. doi: 10.1127/njma/2017/0058
    [25]
    HUANG R, LUO L, HU W, et al. Insight into the pH effect on the oxygen species and Mn chemical valence of Co-Mn catalysts for total toluene oxidation[J]. Catalysis Science & Technology, 2022, 12(13): 4157-4168.
    [26]
    GUO X M. Applied fundamental research on the cooling crystallization of ammonium metavanadate[D]. Tianjin: Tianjin University, 2018. (郭雪梅. 偏钒酸铵冷却结晶分离的应用基础研究[D]. 天津: 天津大学, 2018.

    GUO X M. Applied fundamental research on the cooling crystallization of ammonium metavanadate[D]. Tianjin: Tianjin University, 2018.
    [27]
    PENG H. A literature review on leaching and recovery of vanadium[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103313. doi: 10.1016/j.jece.2019.103313
    [28]
    XU H, LI H S, WANG D. Study on CaSO4 crystallization process and its influential factors[J]. Industrial Water Treatment, 2011, 31(5): 67-69. (徐海, 郦和生, 王岽. 硫酸钙结晶过程及其影响因素研究[J]. 工业水处理, 2011, 31(5): 67-69. doi: 10.3969/j.issn.1005-829X.2011.05.019

    XU H, LI H S, WANG D. Study on CaSO4 crystallization process and its influential factors[J]. Industrial Water Treatment, 2011, 31(5): 67-69. doi: 10.3969/j.issn.1005-829X.2011.05.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (38) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return