| Citation: | WU Jianchun. Study on enhancement of acidolysis rate in ultrafine-grade titanium concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 72-77, 89. doi: 10.7513/j.issn.1004-7638.2025.06.008 |
| [1] |
WANG H B. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017, 38(01): 27-30. (王洪彬. 攀西细粒级钛精矿高效回收工艺研究[J]. 钢铁钒钛, 2017, 38(01): 27-30.
WANG H B. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017, 38(01): 27-30.
|
| [2] |
WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained vanadium-bearing titanomagnetite in Panxi region[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 79-85. (王丰雨, 徐晓衣, 梁焘茂, 等. 攀枝花超细粒级钛精矿磁选富集方法[J]. 钢铁钒钛, 2021, 42(2): 79-85.
WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained vanadium-bearing titanomagnetite in Panxi region[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 79-85.
|
| [3] |
XU X Y, WANG F Y, ZHANG C D, et al. Optimization of gravity separation flowsheet with spiral chute for collecting fine ilmenite[J]. Mining and Metallurgical Engineering, 2021, 41(5): 45-48. (徐晓衣, 王丰雨, 张超达, 等. 螺旋溜槽回收某细粒级钛精矿的试验研究[J]. 矿冶工程, 2021, 41(5): 45-48. doi: 10.3969/j.issn.0253-6099.2021.05.011
XU X Y, WANG F Y, ZHANG C D, et al. Optimization of gravity separation flowsheet with spiral chute for collecting fine ilmenite[J]. Mining and Metallurgical Engineering, 2021, 41(5): 45-48. doi: 10.3969/j.issn.0253-6099.2021.05.011
|
| [4] |
MEHDILO A, IRANNAJAD M. Surface modification of ilmenite and its accompanied gangue minerals by thermal pretreatment: Application in flotation process[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2836-2851. doi: 10.1016/S1003-6326(21)65697-2
|
| [5] |
LI H Q, WANG M H, QIU G B. Behavior of sulfuric acid acidolysis of perovskite concentratest[J]. Chemical Industry and Engineering Progress2023, 42(S1): 536-541. (李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541.
LI H Q, WANG M H, QIU G B. Behavior of sulfuric acid acidolysis of perovskite concentratest[J]. Chemical Industry and Engineering Progress2023, 42(S1): 536-541.
|
| [6] |
WANG H B, WU X P, MA X, et al. Research on leaching behavior and kinetics of titanium from solid phase of acidolysis of titanium concentrate[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3655-3663. (王海波, 吴小平, 马鑫, 等. 钛精矿酸解固相物中钛的浸出行为及动力学研究[J]. 中国有色金属学报, 2021, 31(12): 3655-3663.
WANG H B, WU X P, MA X, et al. Research on leaching behavior and kinetics of titanium from solid phase of acidolysis of titanium concentrate[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3655-3663.
|
| [7] |
GAO J. Discussion on phase transformation characteristics of titanium concentrate during continuous acidolysis process[J]. Metallurgical Analysis, 2019, 39(12): 8-15. (高健. 钛精矿连续酸解过程中物相变化特征探讨[J]. 冶金分析, 2019, 39(12): 8-15.
GAO J. Discussion on phase transformation characteristics of titanium concentrate during continuous acidolysis process[J]. Metallurgical Analysis, 2019, 39(12): 8-15.
|
| [8] |
WU J C, LU R F, SHI R C. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 37-43. (吴健春, 路瑞芳, 石瑞成. 酸解残渣回收矿的酸解性能研究[J]. 钢铁钒钛, 2021, 42(3): 37-43.
WU J C, LU R F, SHI R C. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 37-43.
|
| [9] |
MACIEJ J, KRZYSZTOF L, SANDRA T, et al. Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration[J]. Green Sciences, 2021, 23(3): 37-42.
|