| Citation: | YU Jie, ZHONG Dapeng, HUANG Qingyun, XU Haiming, XIANG Junyi, YU Wenhao, LÜ Xuewei. Preparation of high-purity vanadium metal by molten salt synergistic magnesiothermic reduction[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 78-83. doi: 10.7513/j.issn.1004-7638.2025.06.009 |
| [1] |
HU Y, ZHANG Y, BAO S, et al. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(10): 893-898. doi: 10.1007/s12613-012-0644-9
|
| [2] |
KHOSHAHVAL F, PARK M, SHIN H C, et al. Vanadium, rhodium, silver and cobalt self-powered neutron detector calculations by RAST-K v2.0[J]. Annals of Nuclear Energy, 2018, 111: 644-659. doi: 10.1016/j.anucene.2017.09.048
|
| [3] |
ZHOU Y, CAO L, WANG L, et al. Monte Carlo analyses and experimental investigation of the vanadium self-powered neutron detector in 60Co source and research pulsed reactor[J]. Nuclear Instruments & Methods in Physics Research. Section A, 2023, 1056: 168704.
|
| [4] |
PENG X, LI Q, WANG K. Dynamic compensation of vanadium self powered neutron detectors based on Luenberger form filter[J]. Progress in Nuclear Energy (New Series), 2015, 78: 190-195. doi: 10.1016/j.pnucene.2014.09.006
|
| [5] |
LARBALESTIER D, GUREVICH A, FELDMANN D M, et al. High-Tc superconducting materials for electric power applications[J]. Nature (London), 2001, 414(6861): 368-377. doi: 10.1038/35104654
|
| [6] |
NIU P J, ZHANG D D, ZHOU R H, et al. Corrosion of vanadium-based alloys as cladding materials for sodium-cooled fast reactors[J]. Atomic Energy Science and Technology, 1982(6): 709-716. (牛平均, 张道德, 周瑞瑚, 等. 钠冷快堆包壳材料钒基合金的腐蚀[J]. 原子能科学技术, 1982(6): 709-716.
NIU P J, ZHANG D D, ZHOU R H, et al. Corrosion of vanadium-based alloys as cladding materials for sodium-cooled fast reactors[J]. Atomic Energy Science and Technology, 1982(6): 709-716.
|
| [7] |
WANG S, GUO Y, ZHENG F, et al. Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1687-1696. doi: 10.1016/S1003-6326(20)65330-4
|
| [8] |
SILIN I, HAHN K, GÜRSEL D, et al. Mineral processing and metallurgical treatment of lead vanadate ores[J]. Minerals (Basel), 2020, 10(2): 197.
|
| [9] |
KAGAWA A, ONO E, KUSAKABE T, et al. Absorption of hydrogen by vanadium-rich V Ti-based alloys[J]. Journal of the Less Common Metals, 1991, 172-174: 64-70.
|
| [10] |
BRISCOE H V A. Inorganic chemistry[J]. Annual Reports on the Progress of Chemistry, 1923, 20(1): 28-56.
|
| [11] |
WANG F, XU B, WAN H, et al. Preparation of vanadium powders by calcium vapor reduction of V2O3 under vacuum[J]. Vacuum, 2020, 173: 109133. doi: 10.1016/j.vacuum.2019.109133
|
| [12] |
KONG Y, CHEN J, LI B, et al. Mechanistic insight into the influence of Al2O3 concentration on the electro-reduction of V2O3 to vanadium in molten Na3AlF6[J]. Electrochimica acta, 2019, 295: 452-460. doi: 10.1016/j.electacta.2018.10.155
|
| [13] |
KONG Y, LI B, CHEN J, et al. Electrochemical reduction of vanadium sesquioxide in low-temperature molten fluoride salts[J]. Electrochimica acta, 2020, 342: 136081. doi: 10.1016/j.electacta.2020.136081
|
| [14] |
WANG C T, BAROCH E F, WORCESTER S A, et al. preparation and properties of high-purity vanadium and V-15Cr-5Ti[J]. Metall Trans, 1970, 1(6): 1683-1689.
|
| [15] |
LINDVALL M, GRAN J, SICHEN D. Determination of the vanadium solubility in the Al2O3-CaO(25mass%)-SiO2 system[J]. Calphad, 2014, 47: 50-55. doi: 10.1016/j.calphad.2014.06.003
|
| [16] |
GAO F, NIE Z, YANG D, et al. Environmental impacts analysis of titanium sponge production using Kroll process in China[J]. Journal of Cleaner Production, 2018, 174: 771-779. doi: 10.1016/j.jclepro.2017.09.240
|
| [17] |
XIA Y, LEFLER H D, FANG Z Z, et al. Chapter 17-Energy consumption of the Kroll and HAMR processes for titanium production[M]//FANG Z Z, FROES F H, ZHANG Y. Extractive Metallurgy of Titanium. Elsevier, 2020: 389-410.
|
| [18] |
FERRANTE M J. High purity vanadium by metallothermic reduction of vanadium trichloride[M]. America: US Department of the Interior: Bureau of Mines, 1968.
|
| [19] |
MIYAUCHI A, OKABE T H. Production of metallic vanadium by preform reduction process[J]. Materials Transactions, 2010, 51(6): 1102-1108. doi: 10.2320/matertrans.M2010027
|
| [20] |
INAZU N S E F S. A facile formation of vanadium(0) by the reduction of vanadium pentoxide pelletized with magnesium oxide enabled by microwave irradiation[J]. Chemistry Select, 2020, 10(5): 2949-2953.
|
| [21] |
YAN J, DOU Z, ZHANG T. Preparation of vanadium by the magnesiothermic self-propagating reduction and process control[J]. Nanotechnology Reviews (Berlin), 2022, 11(1): 1237-1247. doi: 10.1515/ntrev-2022-0074
|
| [22] |
ZHONG D P, PEI G S, XIANG J Y, et al. Thermodynamic behavior of dissolved oxygen and hydrogen in pure vanadium[J]. Journal of Mining and Metallurgy. Section B, Metallurgy, 2021, 57(3): 413-419. doi: 10.2298/JMMB210108037Z
|
| [23] |
LEE D W L H S Y. Synthesis of vanadium powder by magnesiothermic reduction[J]. Adv Mater Res, 2014, 1025-6: 509-514.
|
| [24] |
OKABE T H, ZHENG C, TANINOUCHI Y. Thermodynamic considerations of direct oxygen removal from titanium by utilizing the deoxidation capability of rare earth metals[J]. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2018, 49(3): 1056-1066. doi: 10.1007/s11663-018-1172-4
|
| [25] |
KOMURA A I H W N. Solubility of magnesium in molten magnesium chloride[J]. J Soc Chem Ind Japan, 1968, 71(12): 1976-1979.
|