Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
LI Huaquan, LIU Fusheng, QIU Guibao, LÜ Xuewei. Kinetic study on dehydration behavior of titanium dioxide supported by denitration catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 90-97. doi: 10.7513/j.issn.1004-7638.2025.06.011
Citation: LI Huaquan, LIU Fusheng, QIU Guibao, LÜ Xuewei. Kinetic study on dehydration behavior of titanium dioxide supported by denitration catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 90-97. doi: 10.7513/j.issn.1004-7638.2025.06.011

Kinetic study on dehydration behavior of titanium dioxide supported by denitration catalyst

doi: 10.7513/j.issn.1004-7638.2025.06.011
More Information
  • Received Date: 2023-03-27
  • Accepted Date: 2023-05-29
  • Rev Recd Date: 2023-05-27
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • The dehydration of denitration catalyst carrier titanium dioxide is a key control step in the preparation process. By measuring the thermal analysis curves of denitration catalyst carrier titanium dioxide at different heating rates, the dehydration kinetics and reaction mechanism of denitration catalyst carrier titanium dioxide under different atmospheres were studied. The results indicate that the dehydration behavior of titanium dioxide as the carrier of denitrification catalyst is closely related to the calcination atmosphere. The dehydration rate is different in oxygen-containing and oxygen-free atmosphere. Dehydration starts faster in oxygen-containing atmosphere, and then slowly dehydrates until the reaction ends, while dehydration completes slowly in oxygen-free atmosphere. Kinetic calculations were carried out by using the methods of modularless function and modularized function. The results show that the dehydration behavior of titanium dioxide, the support of denitration catalyst, conforms to the Avrami Erofeev equation in oxygen-containing atmosphere, and conforms to the power function rule in oxygen-free atmosphere. The dehydration process is affected by the formation and growth of crystal nuclei.
  • loading
  • [1]
    GONG J Z. Titanium dioxide pigment manufacture technology[M]. Beijing: Chemical Industry Press, 2022. (龚家竹. 钛白粉生产技术[M]. 北京: 化学工业出版社, 2022.

    GONG J Z. Titanium dioxide pigment manufacture technology[M]. Beijing: Chemical Industry Press, 2022.
    [2]
    ZHANG X B, ZHANG J, ZHANG C, et al. Preparation of titanium dioxide thin films and photocatalytic properties[J]. Shandong Ceramics, 2019, 42(3): 9-12. (张新宝, 张健, 张超, 等. 二氧化钛薄膜的制备及其光催化性能研究[J]. 山东陶瓷, 2019, 42(3): 9-12.

    ZHANG X B, ZHANG J, ZHANG C, et al. Preparation of titanium dioxide thin films and photocatalytic properties[J]. Shandong Ceramics, 2019, 42(3): 9-12.
    [3]
    QIN R. Preparation, modification and photocatalytic properties of titanium dioxide photocatalytic catalyst[D]. Hefei: Anhui University, 2019. (秦锐. 二氧化钛光催化剂的制备、改性及光催化性能研究[D]. 合肥: 安徽大学, 2019.

    QIN R. Preparation, modification and photocatalytic properties of titanium dioxide photocatalytic catalyst[D]. Hefei: Anhui University, 2019.
    [4]
    HAMILTON J W J, BYRNE J A, DUNLOP P S M, et al. Evaluating the mechanism of visible light activity for N, F-TiO2 using photo electrochemistry[J]. Journal of Physical Chemistry C, 2014, 118(23): 12206-12209. doi: 10.1021/jp4120964
    [5]
    LUO J, HAO Q, JIANG M C, et al. Preparation of titanium dioxide nanoparticles with ultrafast fiber laser research of preparation titanium dioxide nanoparticles with ultrafast fiber laser ablation[J]. Applied Laser, 2016, 36(5): 516-520. (罗浆, 郝强, 蒋梦慈, 等. 超快光纤激光制备二氧化钛纳米颗粒的研究[J]. 应用激光, 2016, 36(5): 516-520. doi: 10.14128/j.cnki.al.20163605.516

    LUO J, HAO Q, JIANG M C, et al. Preparation of titanium dioxide nanoparticles with ultrafast fiber laser research of preparation titanium dioxide nanoparticles with ultrafast fiber laser ablation[J]. Applied Laser, 2016, 36(5): 516-520. doi: 10.14128/j.cnki.al.20163605.516
    [6]
    YANG C P, ZHAO L Q, YI C Q, et al. Optimization of process conditions for preparation nanosilicon doxides by precipitation method[J]. Chemical Engineering Design Communications, 2021, 47(7): 69-81. (杨长丕, 赵利启, 易重庆, 等. 沉淀法制备纳米二氧化硅的工艺条件优化[J]. 化工设计通讯, 2021, 47(7): 69-81. doi: 10.3969/j.issn.1003-6490.2021.07.034

    YANG C P, ZHAO L Q, YI C Q, et al. Optimization of process conditions for preparation nanosilicon doxides by precipitation method[J]. Chemical Engineering Design Communications, 2021, 47(7): 69-81. doi: 10.3969/j.issn.1003-6490.2021.07.034
    [7]
    ZHOU Q G. Preparation and optical properties of titanium dioxide thin films by sol-gel method[J]. World Nonferrous Metals, 2018(22): 210-211. (周歧刚. 溶胶-凝胶法制备二氧化钛薄膜及其光学性质研究[J]. 世界有色金属, 2018(22): 210-211.

    ZHOU Q G. Preparation and optical properties of titanium dioxide thin films by sol-gel method[J]. World Nonferrous Metals, 2018(22): 210-211.
    [8]
    ZHAO T, CHEN M Y, WANG Z R, et al. Study on preparation and application of TiO2 powder[J]. Shandong Chemical Industry, 2019, 48(3): 40-41. (赵恬, 陈美延, 王仲锐, 等. TiO2粉末的制备和应用研究[J]. 山东化工, 2019, 48(3): 40-41. doi: 10.3969/j.issn.1008-021X.2019.03.020

    ZHAO T, CHEN M Y, WANG Z R, et al. Study on preparation and application of TiO2 powder[J]. Shandong Chemical Industry, 2019, 48(3): 40-41. doi: 10.3969/j.issn.1008-021X.2019.03.020
    [9]
    LIU H E, YU L, TIAN G F, et al. Preparation of nano-TiO2 with {001} facets via microemulsion-solvothermal method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(3): 170-176. (刘会娥, 于磊, 田关峰, 等. 微乳溶剂热法制备暴露{001}晶面的纳米 TiO2[J]. 中国石油大学学报(自然科学版), 2020, 44(3): 170-176.

    LIU H E, YU L, TIAN G F, et al. Preparation of nano-TiO2 with {001} facets via microemulsion-solvothermal method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(3): 170-176.
    [10]
    DENG K. Analysis on process for preparing titanium dioxide by gas phase oxidation of titanium tetrachloride[J]. Chlor-Alkali Industry, 2018, 54(12): 25-31. (邓科. 四氯化钛气相氧化制备二氧化钛的工艺过程分析[J]. 氯碱工业, 2018, 54(12): 25-31. doi: 10.3969/j.issn.1008-133X.2018.12.010

    DENG K. Analysis on process for preparing titanium dioxide by gas phase oxidation of titanium tetrachloride[J]. Chlor-Alkali Industry, 2018, 54(12): 25-31. doi: 10.3969/j.issn.1008-133X.2018.12.010
    [11]
    MA L. Chemical gas phase deposition of in situ synthetic transition metal and carbon nanotube composite modified titanium dioxide photocatalytic material[D]. Shanghai: East China University of Technology, 2012. (马磊. 化学气相沉积原位合成过渡金属和碳纳米管复合改性二氧化钛光催化材料[D]. 上海: 华东理工大学, 2012.

    MA L. Chemical gas phase deposition of in situ synthetic transition metal and carbon nanotube composite modified titanium dioxide photocatalytic material[D]. Shanghai: East China University of Technology, 2012.
    [12]
    ZHAO Y Z, SUN J J, LI J, et al. Synthesis of high purity TiO2 powders by fluidized gas hydrolysis[J]. CIESC Journal, 2017, 68(10): 3978-3984. (赵玉仲, 孙建军, 李军, 等. 流化床气相水解制备高纯二氧化钛[J]. 化工学报, 2017, 68(10): 3978-3984. doi: 10.11949/j.issn.0438-1157.20170515

    ZHAO Y Z, SUN J J, LI J, et al. Synthesis of high purity TiO2 powders by fluidized gas hydrolysis[J]. CIESC Journal, 2017, 68(10): 3978-3984. doi: 10.11949/j.issn.0438-1157.20170515
    [13]
    LI J W, FU M, DONG F, et al. Preparation of N-doped nano-TiO2 photocatalyst using metatitanic acid and photocatalytic performance under visible light irradiation[J]. Journal of Synthetic Crystals, 2014, 43(4): 972-979. (黎经纬, 付敏, 董帆, 等. 以偏钛酸浆料制备氮掺杂纳米二氧化钛及其可见光催化性能研究[J]. 人工晶体学报, 2014, 43(4): 972-979.

    LI J W, FU M, DONG F, et al. Preparation of N-doped nano-TiO2 photocatalyst using metatitanic acid and photocatalytic performance under visible light irradiation[J]. Journal of Synthetic Crystals, 2014, 43(4): 972-979.
    [14]
    ZHAO D. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2019. (赵顶. 纳米TiO2-x的制备及其对砷离子吸附特性的研究[D]. 昆明: 昆明理工大学, 2019.

    ZHAO D. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2019.
    [15]
    MA W P. Effect of potassium hydroxide on calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 35-38. (马维平. 偏钛酸煅烧过程中氢氧化钾作用研究[J]. 钢铁钒钛, 2019, 40(4): 35-38. doi: 10.7513/j.issn.1004-7638.2019.04.007

    MA W P. Effect of potassium hydroxide on calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 35-38. doi: 10.7513/j.issn.1004-7638.2019.04.007
    [16]
    BI Y, WANG G S. Dehydration kinetics study on potassium calcium borate[J]. Journal of Synthetic Crystals, 2018, 47(12): 2436-2440. (毕颖, 王国胜. 硼酸钾钙晶体的脱水动力学研究[J]. 人工晶体学报, 2018, 47(12): 2436-2440. doi: 10.16553/j.cnki.issn1000-985x.2018.12.003

    BI Y, WANG G S. Dehydration kinetics study on potassium calcium borate[J]. Journal of Synthetic Crystals, 2018, 47(12): 2436-2440. doi: 10.16553/j.cnki.issn1000-985x.2018.12.003
    [17]
    ZOU J X, CUI X M, PENG F C, et al. Thermodynamics of Ti, V and their chemical compounds[M]. Beijing: Metallurgical Industry Press, 2018. (邹建新, 崔旭梅, 彭富昌, 等. 钒钛化合物及热力学[M]. 北京: 冶金工业出版社, 2018.

    ZOU J X, CUI X M, PENG F C, et al. Thermodynamics of Ti, V and their chemical compounds[M]. Beijing: Metallurgical Industry Press, 2018.
    [18]
    ZHAI W R, XU B Q, CHEN S F, et al. Dehydration kinetics study on metatitanic acid in different atmosphere[J]. Materials Reports, 2021, 35(20): 20016-20021. (翟蔚然, 徐宝强, 陈思峰, 等. 不同气氛下偏钛酸脱水行为动力学研究[J]. 材料导报, 2021, 35(20): 20016-20021.

    ZHAI W R, XU B Q, CHEN S F, et al. Dehydration kinetics study on metatitanic acid in different atmosphere[J]. Materials Reports, 2021, 35(20): 20016-20021.
    [19]
    HU R Z, GAO S L, ZHAO F Q. Thermal analysis kinetics[M]. Beijing: Science Press, 2008. (胡荣祖, 高胜利, 赵凤起. 热分析动力学[M]. 北京: 科学出版社, 2008.

    HU R Z, GAO S L, ZHAO F Q. Thermal analysis kinetics[M]. Beijing: Science Press, 2008.
    [20]
    JIU S W, CHEN Y X, LI H, et al. Kinetic study of the thermal dehydration of phosphogypsum[J]. Applied Chemical Industry, 2011, 40(3): 381-386. (酒少武, 陈延信, 李辉, 等. 磷石膏脱水反应动力学研究[J]. 应用化工, 2011, 40(3): 381-386. doi: 10.11973/lhjy-hx201510005

    JIU S W, CHEN Y X, LI H, et al. Kinetic study of the thermal dehydration of phosphogypsum[J]. Applied Chemical Industry, 2011, 40(3): 381-386. doi: 10.11973/lhjy-hx201510005
    [21]
    ZHAI W R. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2021. (翟蔚然. 纳米TiO2的制备及其对砷离子光催化氧化吸附特性的研究[D]. 昆明: 昆明理工大学, 2021.

    ZHAI W R. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (33) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return