| Citation: | WU Xiaoping, XU Wei, LIU Yongsheng. Titanium 3D printing and its application in biomedical implants[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 106-116, 123. doi: 10.7513/j.issn.1004-7638.2025.06.013 |
| [1] |
HLINKA J, KRAUS M, HAJNYS J, et al. Complex corrosion properties of AISI 316L steel prepared by 3D printing technology for possible implant applications[J]. Materials, 2020, 13(7): 1527. doi: 10.3390/ma13071527
|
| [2] |
PRAMANIK S, AGARWAL A K, RAI K N. Chronology of total hip joint replacement and materials development[J]. Trends in Biomaterials & Artificial Organs, 2005, 19: 15-26.
|
| [3] |
RONY L, LANCIGU R, HUBERT L. Intraosseous metal implants in orthopedics: A review[J]. Morphologie, 2018, 102(339): 231-242. doi: 10.1016/j.morpho.2018.09.003
|
| [4] |
ASTM I, ASTM52900-15 standard terminology for additive manufacturing-general principles-terminology[S]. ASTM International, West Conshohocken, PA, 2015, 3(4): 5.
|
| [5] |
DUTTA B, FROES F H S. The additive manufacturing (AM) of titanium alloys[M]. In: Titanium powder metallurgy. Elsevier, 2015: 447-468.
|
| [6] |
MILEWSKI J O. Additive manufacturing metal, the art of the possible[M]. In: Additive Manufacturing of Metals. Springer, 2017: 7-33.
|
| [7] |
POPOV V, MULLER-KAMSKII G, KATZ-DEMYANETZ A, et al. Additive manufacturing to veterinary practice: Recovery of bony defects after the osteosarcoma resection in canines[J]. Biomedical Engineering Letters, 2019, 9: 97-108.
|
| [8] |
GIBSON I, ROSEN D, STUCKER B, et al. Additive manufacturing technologies[M]. Springer, 2021: 491-524.
|
| [9] |
GIBSON I, ROSEN D W, STUCKER B. Printing processes, additive manufacturing technologies: rapid prototyping to direct digital manufacturing[M]. Springer, 2010: 187-222.
|
| [10] |
CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320. doi: 10.1016/j.actamat.2014.12.054
|
| [11] |
SUN P, FANG Z Z, ZHANG Y, et al. Review of the methods for production of spherical Ti and Ti alloy powder[J]. JOM, 2017, 69: 1853-1860. doi: 10.1007/s11837-017-2513-5
|
| [12] |
LIU Z, WELSCH G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys[J]. Metallurgical Transactions A, 1988, 19: 527-542. doi: 10.1007/BF02649267
|
| [13] |
WELSCH G, BOYER R, COLLINGS E W. Materials properties handbook: titanium alloys[M]. ASM international, 1993.
|
| [14] |
CHENG L, SHOMA K, SURESH S, et al. 3D printing of micro-and nanoscale bone substitutes: A review on technical and translational perspectives[J]. International Journal of Nanomedicine, 2021, 16: 4289-4319. doi: 10.2147/IJN.S311001
|
| [15] |
BANDYOPADHYAY A, GHOSH S, BOCCACCINI A R, et al. 3D printing of biomedical materials and devices[J]. Journal of Materials Research, 2021, 36: 3713-3724. doi: 10.1557/s43578-021-00407-y
|
| [16] |
ASHTIANI R E, ALAM M, TAVAKOLIZADEH S, et al. The Role of biomaterials and biocompatible materials in implant-supported dental prosthesis[J]. Evidence-Based Complementary and Alternative Medicine. 2021: 3349433.
|
| [17] |
ALBREKTSSON T, JOHANSSON C. Osteoinduction, osteoconduction and osseointegration[J]. European Spine Journal, 2001, 10(Suppl.S2): S96-S101.
|
| [18] |
CHEN Q, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering: R: Reports, 2015, 87: 1-57. doi: 10.1016/j.mser.2014.10.001
|
| [19] |
NI J, LING H, ZHANG S, et al. Three-dimensional printing of metals for biomedical applications[J]. Mater Today Bio, 2019, 3: 100024. doi: 10.1016/j.mtbio.2019.100024
|
| [20] |
GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review[J]. Progress in Materials Science, 2009, 54: 397-425. doi: 10.1016/j.pmatsci.2008.06.004
|
| [21] |
LEYENS C, PETERS M. (Eds. ). Titanium and titanium alloys: Fundamentals and applications[M]. Wiley-VCH, Weinheim, 2005.
|
| [22] |
BRUNKE F, SIEMERS C, RÖSLER J. Second-generation titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A comparison of the mechanical properties for implant applications[C]. MATEC Web of Conferences 321, 05006 (2020), The 14th World Conference on Titanium.
|
| [23] |
YEGANEH V E, LI P J. Effect of beam offset on microstructure and mechanical properties of dissimilar electron beam welded high temperature titanium alloys[J]. Mater Design, 2017, 124: 78-86. doi: 10.1016/j.matdes.2017.03.056
|
| [24] |
DAVIS J R. Metallic materials, handbook of materials for medical devices[M]. ASM International, 2003: 21-50.
|
| [25] |
LÜTJERING G, WILLIAMS J C. Titanium, 2nd ed[M]. Springer, Berlin Heidelberg, 2007.
|
| [26] |
VENKATESH B D, CHEN D L, BHOLE S D. Effect of heat treatment on mechanical properties of Ti-6Al-4V ELI alloy[J]. Materials Science and Engineering: A, 2009, 506(1-2): 117-124. doi: 10.1016/j.msea.2008.11.018
|
| [27] |
MILOVANOVIĆ A, SEDMAK A, GRBOVIĆ A, et al. Design aspects of hip implant made of Ti-6Al-4V extra low interstitials alloy[J]. Procedia Structural Integrity, 2020, 26: 299-305. doi: 10.1016/j.prostr.2020.06.038
|
| [28] |
KHANG D, LU J, YAO C, et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium[J]. Biomaterials, 2008, 29(8): 970-983. doi: 10.1016/j.biomaterials.2007.11.009
|
| [29] |
ZHANG L, CHEN L. A review on biomedical titanium alloys: recent progress and prospect[J]. Advanced Engineering Materials, 2019, 21(4): 1801215. doi: 10.1002/adem.201801215
|
| [30] |
ELIAS C N , LIMA J H C, VALIEV R, et al. Biomedical applications of titanium and its alloys[J]. JOM, 2008, 60: 46-49.
|
| [31] |
DELANNOY S, BAÏZ S, LAHEURTE P, et al. Development of elastically graded titanium alloys for biomedical applications[C]. MATEC Web of Conferences 321, 05016 (2020), The 14th World Conference on Titanium.
|
| [32] |
ROBLING A G, CASTILLO A B, TURNER C H. Biomechanical and molecular regulation of bone remodeling[J]. Annual Review of Biomedical Engineering, 2006, 8: 455-498.
|
| [33] |
ZHOU M, CHENG Y, ZHOU X, et al. Titanium alloy medical implants based on additive manufacturing technology[J]. Scientia Sinica Technologica, 2016, 46: 1097-1115. doi: 10.1360/N092016-00046
|
| [34] |
WALLY Z, VANGRUNSVEN W, CLAEYSSENS F, et al. Porous titanium for dental implant applications[J]. Metals, 2015, 5: 1902-1920. doi: 10.3390/met5041902
|
| [35] |
YE C, ZHANG C, ZHAO J, et al. Effects of post-processing on the finish, porosity, residual stresses fatigue performance of additive manufactured metals: A review[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6407-6425. doi: 10.1007/s11665-021-06021-7
|
| [36] |
KOSHY E, PHILIP S R, Dental implant surfaces: An overview[J]. International Journal of Clinical Implant Dentistry, 2015, 1(1): 14-22.
|
| [37] |
BANDYOPADHYAY A, ESPANA F, BALLA V K, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants[J]. Acta Biomater, 2010, 6(4): 1640-1648. doi: 10.1016/j.actbio.2009.11.011
|
| [38] |
EVANS F G. Mechanical properties and histology of cortical bone from younger and older men[J]. Anatomical Record, 1976, 185(1): 1-11. doi: 10.1002/ar.1091850102
|
| [39] |
BURSTEIN A H, REILLY D T, MARTENS M. Aging of bone tissue: mechanical properties[J]. The Journal of Bone & Joint Surgery, 1976, 58(1): 82-86.
|
| [40] |
PRIEST N D. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update[J]. Journal of Environmental Monitoring, 2004, 6: 375-403. doi: 10.1039/B314329P
|
| [41] |
NAGASAWA K, ITO S, KAKUDA T, et al, Transport mechanism for aluminum citrate at the blood-brain barrier: kinetic evidence implies involvement of system Xc- in immortalized rat brain endothelial cells[J]. Toxicology letters, 2005, 155: 289-296.
|
| [42] |
YOKEL R A, ALLEN D D, ACKLEY D C. The distribution of aluminum into and out of the brain[J]. Journal of Inorganic Biochemistry, 1999, 76: 127-132. doi: 10.1016/S0162-0134(99)00124-5
|
| [43] |
SURMENEVA M, et al. Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles[J]. Applied Surface Science, 2019, 480: 822-829. doi: 10.1016/j.apsusc.2019.03.003
|
| [44] |
ENTEZARIAN M, ALLAIRE F, TSANTRIZOS P, et al. Plasma atomization: A new process for the production of fine, spherical powders[J]. JOM, 1996, 48: 53-55.
|
| [45] |
MOLL J H. Utilization of gas-atomized titanium and titanium-aluminide powder[J]. JOM, 2000, 52(5): 32-34. doi: 10.1007/s11837-000-0030-3
|
| [46] |
GHODS S, SCHULTZ E, WISDOMA C, et al. Electron beam additive manufacturing of Ti6Al4V: Evolution of powder morphology and part microstructure with powder reuse[J]. Materialia, 2020, 9: 100631. doi: 10.1016/j.mtla.2020.100631
|
| [47] |
GUO A, CHENG L, ZHAN S, et al. Biomedical applications of the powder-based 3D printed titanium alloys: A review[J]. Journal of Materials Science & Technology, 2022, 125: 252-264.
|
| [48] |
ANDREUCCI C A, FONSECA E M, JORGE R N. 3D printing as an efficient way to prototype and develop dental implants[J]. Biomed Informatics, 2022, 2(4): 671-679.
|
| [49] |
YADROITSEV I, KRAKHMALEV P, YADROITSAVA I, et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 2013, 213(4): 606-613. doi: 10.1016/j.jmatprotec.2012.11.014
|
| [50] |
ABD‐ELGHANY K, BOURELL D L. Property evaluation of 304L stainless steel fabricated by selective laser melting[J]. Rapid Prototyping Journal, 2012, 18(5): 420-428.
|
| [51] |
SACHDEVA A, SINGH S, SHARMA V S. Investigating surface roughness of parts produced by SLS process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64: 1505-1516.
|
| [52] |
MURR L E, MARTINEZ E, HERNANDEZ J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2012, 1(3): 167-177. doi: 10.1016/S2238-7854(12)70029-7
|
| [53] |
ZHANG L, LIU Y, LI S, et al. Additive manufacturing of titanium alloys by electron beam melting: a review[J]. Advanced Engineering Materials, 2018, 20(5): 1700842. doi: 10.1002/adem.201700842
|
| [54] |
BAR-COHEN Y. Advances in manufacturing and processing of materials and structures[M]. CRC Press, 2018.
|
| [55] |
HIRT L, REISER A, SPOLENAK R, et al. Additive manufacturing of metal structures at the micrometer scale[J]. Advanced Materials, 2017, 29(17): 1604211. doi: 10.1002/adma.201604211
|
| [56] |
GENG P, ZHAO J, WU W, et al. Effect of thermal processing and heat treatment condition on 3D printing PPS properties[J]. Polymers, 2018, 10: 875. doi: 10.3390/polym10080875
|
| [57] |
MONKOVA K, ZETKOVA I, KUˇCEROVÁ L, et al. Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel[J]. Archive Applied Mechanics, 2019, 89: 791-804. doi: 10.1007/s00419-018-1389-3
|
| [58] |
TILLMANN W, SCHAAK C, NELLESEN J, et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 13: 93-102. doi: 10.1016/j.addma.2016.11.006
|
| [59] |
KASPEROVICH G, HAUSMANN J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. Journal of Materials Processing Technolnology, 2015, 220: 202-214. doi: 10.1016/j.jmatprotec.2015.01.025
|
| [60] |
SHENG X, WANG A, WANG Z, et al. Advanced surface modification for 3D-printed titanium alloy implant interface functionalization[J]. Frontiers in Bioengineering and biotechnology, 2022, (10): article 850110.
|
| [61] |
KUNČICKÁ L, KOCICH R, LOWE T C. Advances in metals and alloys for joint replacement[J]. Progress in Materials Science, 2017, 88: 232-280. doi: 10.1016/j.pmatsci.2017.04.002
|
| [62] |
TOBIN E J. Recent coating developments for combination devices in orthopedic and dental applications: A literature review[J]. Advanced Drug Delivery Reviews, 2017, 112: 88-100. doi: 10.1016/j.addr.2017.01.007
|
| [63] |
KUMAR A, MISRA R D K. 3D-printed titanium alloys for orthopedic applications, in titanium in medical and dental applications[M]. Elsevier, 2018: 251-275.
|
| [64] |
SHENG X, WANG A, WANG Z, at al. Advanced surface modification for 3D-printed titanium alloy implant interface functionalization[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 850110.
|
| [65] |
KIM J H, et al. Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications[J]. Dental Materials, 2020, 36(7): 945-958. doi: 10.1016/j.dental.2020.04.027
|
| [66] |
LEE U L, KWON J S, WOO S H, et al. Simultaneous bimaxillary surgery and mandibular reconstruction with a 3-dimensional printed titanium implant fabricated by electron beam melting: a preliminary mechanical testing of the printed mandible[J]. Journal of Oral and Maxillofacial Surgery, 2016, 74(7): 1501. e1-1501. e15.
|
| [67] |
PARK E K, LIM J Y, YUN I S, et al. Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects[J]. Journal of Craniofacial Surgery, 2016, 27(4): 943-949. doi: 10.1097/SCS.0000000000002656
|
| [68] |
IMANISHI J, CHOONG P F M. Three-dimensional printed calcaneal prosthesis following total calcanectomy[J]. International Journal of Surgery Case Reports, 2015, 10: 83-87. doi: 10.1016/j.ijscr.2015.02.037
|
| [69] |
ARANDA J L, JIMÉNEZ M F, RODRÍGUEZ M, et al. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction[J]. European Journal of Cardio-Thoracic Surgery, 2015, 48(4): e92-e94. doi: 10.1093/ejcts/ezv265
|
| [70] |
MOBBS R J, COUGHLAN M, THOMPSON R, et al. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report[J]. J. Neurosurgery Spine, 2017, 26(4): 513-518. doi: 10.3171/2016.9.SPINE16371
|
| [71] |
HATAMLEH M M, WU X, ALNAZZAWI A, et al, Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments[J]. Dental Materials, 2018, 34(4): 676-683.
|
| [72] |
CHAI Y C, KERCKHOFS G, ROBERTS S J, et al. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition[J]. Biomaterials, 2012, 33(16): 4044-4058. doi: 10.1016/j.biomaterials.2012.02.026
|
| [73] |
CORDEIRO J M, BELINE T, RIBEIRO A L, et al. Development of binary and ternary titanium alloys for dental implants[J]. Dental Materials, 2017, 33(11): 1244-1257. doi: 10.1016/j.dental.2017.07.013
|
| [74] |
OLIVEIRA T T, REIS A C. Fabrication of dental implants by the additive manufacturing method: A systematic review[J]. The Journal of Prosthetic Dentistry, 2019, 122(3): 270-274. doi: 10.1016/j.prosdent.2019.01.018
|
| [75] |
TEDESCO J, LEE B, LIN A, et al. Osseointegration of a 3D printed stemmed titanium dental implant: A pilot study[J]. International Journal of Dentistry, 2017, 5920714.
|
| [76] |
FUKUDA A, TAKEMOTO M, SAITO T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J]. Acta Biomater, 2011, 7(5): 2327-2336. doi: 10.1016/j.actbio.2011.01.037
|
| [77] |
HAN C J, LI Y, WANG Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants[J]. Journal of The Mechanical Behavior of Biomedical Materials, 2018, 80: 119-127. doi: 10.1016/j.jmbbm.2018.01.013
|
| [78] |
HOLLANDER D A, WALTER M V, WIRTZ T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming[J]. Biomaterials, 2006, 27(7): 955-963. doi: 10.1016/j.biomaterials.2005.07.041
|
| [79] |
JANG T-S, KIM D, HAN G, et al. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review[J]. Biomedical Engineering Letters, 2020, 10: 505-516. doi: 10.1007/s13534-020-00177-2
|
| [80] |
FROES F H. Titanium for medical and dental application-An introduction, in titanium in medical and dental applications[M]. Elsevier, 2018:3-21.
|
| [81] |
GUILLERMO P, BELÉN M, FRANCISCO M, et al. Current applications of 3D printing in dental implantology: A scoping review mapping the evidence[J]. Clinical Oral Implants Research, 2024, 35: 1011-1032. doi: 10.1111/clr.14198
|
| [82] |
DAWOOD A, MARTI B, SAURET-JACKSON V. 3D printing in dentistry[J]. British Dental Journal, 2015, 219: 521-529. doi: 10.1038/sj.bdj.2015.914
|
| [83] |
GORDON D S, BLAIR G A. Titanium cranioplasty[J]. British Medical Journal, 1974, 2: 478-481. doi: 10.1136/bmj.2.5917.478
|
| [84] |
CABRAJA M, KLEIN M, LEHMANN T N. Long-term results following titanium cranioplasty of large skull defects[J]. Neurosurgical Focus, 2009, 26: E10.
|
| [85] |
BONDA D J, MANJILA S, SELMAN W R, et al. The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions[J]. Neurosurgery, 2015, 77: 814-824. doi: 10.1227/NEU.0000000000000899
|
| [86] |
DURHAM S R, MCCOMB J G, LEVY M L. Correction of large (> 25 cm2) cranial defects with “reinforced” hydroxyapatite cement: technique and complications[J]. Neurosurgery, 2003, 52(4): 842-845. doi: 10.1227/01.NEU.0000054220.01290.8E
|
| [87] |
GUEUTIER A, KÜN-DARBOIS J D, LACCOURREYE L, et al. Anatomical and functional rehabilitation after total bilateral maxillectomy using a custom-made bone-anchored titanium prosthesis[J]. International Journal Oral Maxillofacial Surgery, 2020, 49(3): 392-396. doi: 10.1016/j.ijom.2019.08.014
|
| [88] |
LI Z M, ZHANG X B, LIU W, et al. Applicative assessment of a selective laser melting 3D-printed Ti-6Al-4V plate with a honeycomb structure in the reconstruction of a mandibular defect of a beagle dog[J]. ACS Biomaterials Science & Engineering, 2023, 9(11): 6472-6480.
|
| [89] |
SHARMA N, OSTAS D, ROTAR H, et al. Design and additive manufacturing of a biomimetic customized cranial implant based on voronoi diagram[J]. Frontiers in Physiology, 2021, 12: 647923. doi: 10.3389/fphys.2021.647923
|
| [90] |
LEE U L, YUN S, LEE H, et al. Osseointegration of 3D-printed titanium implants with surface and structure modifications[J]. Dental Materials, 2022, 38(10): 1648-1660. doi: 10.1016/j.dental.2022.08.003
|
| [91] |
CHEN C, HUANG B, LIU Y, et al. Functional engineering strategies of 3D printed implants for hard tissue replacement[J]. Regenerative Biomaterials, 2023, 10: rbac094. doi: 10.1093/rb/rbac094
|
| [92] |
MAJOR R, KOWALCZYK P, SURMIAK M, et al. Patient specific implants for jawbone reconstruction after tumor resection[J]. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111056. doi: 10.1016/j.colsurfb.2020.111056
|
| [93] |
PARTHASARATHY J, STARLY B, RAMAN S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. Journal of Mechanical Behavior of Biomedical Materials, 2010, 3(3): 249-259. doi: 10.1016/j.jmbbm.2009.10.006
|
| [94] |
DENG Z, ZOU Q, WANG L, et al. Comparison between three-dimensional printed titanium and PEEK cages for cervical and lumbar interbody fusion: A prospective controlled trial[J]. Orthopaedic. Surgery, 2023, 15: 2889-2900. doi: 10.1111/os.13896
|
| [95] |
DUAN Y, FENG D, LI T, et al. Comparison of lumbar interbody fusion with 3D-printed porous titanium cage versus polyetheretherketone cage in treating lumbar degenerative disease: A Systematic review and meta-analysis[J]. World Neurosurgery, 2024, 183: 144-156. doi: 10.1016/j.wneu.2023.12.111
|
| [96] |
LEWANDROWSKI K U, VIRA S, ELFAR J C, et al. Advancements in custom 3D-printed titanium interbody spinal fusion cages and their relevance in personalized spine care[J]. Journal of Personalized Medicine, 2024, 14(8): 809.
|
| [97] |
MACDONALD E, WICKER R. Multiprocess 3D printing for increasing component functionality[J]. Science, 2016, 353(6307): aaf2093. doi: 10.1126/science.aaf2093
|
| [98] |
JING Z, ZHANG T, XIU P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review[J]. Biomedical Materials, 2020, 15: 052003. doi: 10.1088/1748-605X/ab9078
|
| [99] |
SONG P, HU C, PEI X, et al. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration[J]. Jouirnal of MaterialsChemistry B, 2019, 7: 2865-2877.
|
| [100] |
WALLACE N, SCHAFFER N E, ALEEM I S, et al. 3D-printed patient-specific spine implants: A systematic review[J]. Clinical Spine Surgery, 2020, 33: 400-407. doi: 10.1097/BSD.0000000000001026
|
| [101] |
AMALRAJU D, DAWOOD A. Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture[J]. Engineering Science and Technology: An International Journal, 2012, 2: 381-388.
|
| [102] |
HE S, ZHU J, JING Y, et al. Effect of 3D-printed porous titanium alloy pore structure on bone regeneration: A review[J]. Coatings, 2024, 14: 253. doi: 10.3390/coatings14030253
|
| [103] |
KELLY C N, WANG T, CROWLEY J, et al. High-strength, porous additively manufactured implants with optimized mechanical osseointegration[J]. Biomaterials, 2021, 279: 121206. doi: 10.1016/j.biomaterials.2021.121206
|
| [104] |
HOLMES B, BULUSU K, PLESNIAK M, et al. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair[J]. Nanotechnology, 2016, 27: 064001. doi: 10.1088/0957-4484/27/6/064001
|
| [105] |
WANG Z, MITHIEUX S M, WEISS A S. Fabrication techniques for vascular and vascularized tissue engineering[J]. Advanced Healthcare Materials, 2019, 8(19): 1900742. doi: 10.1002/adhm.201900742
|
| [106] |
LEWANDROWSKI K U, VIRA S, ELFAR J C, et al. Advancements in custom 3D-printed titanium interbody spinal fusion cages and their relevance in personalized spine care[J]. Journal Personalized Medicine, 2024, 14: 809. doi: 10.3390/jpm14080809
|
| [107] |
XU N, WEI F, LIU X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma[J]. Spine, 2016, 41: E50-E54. doi: 10.1097/BRS.0000000000001179
|
| [108] |
LI X, WANG Y, ZHAO Y, et al. Multilevel 3D printing implant for reconstructing cervical spine with metastatic papillary thyroid carcinoma[J]. Spine, 2017, 42: E1326-E1330. doi: 10.1097/BRS.0000000000002229
|
| [109] |
KIM D, LIM J Y, SHIM K W, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result[J]. Yonsei Medical Journal, 2017, 58: 453-457. doi: 10.3349/ymj.2017.58.2.453
|
| [110] |
CHOY W J, MOBBS R J, WILCOX B, et al. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor[J]. World Neurosurgery. 2017, 105: 1032. e13–1032. e17.
|
| [111] |
PUCCI J U, CHRISTOPHE B R, SISTI J A, et al. Three-dimensional printing: Technologies, applications, and limitations in neurosurgery[J]. Biotechnology Advances, 2017, 35: 521-529. doi: 10.1016/j.biotechadv.2017.05.007
|
| [112] |
ILIOPOULOS E, MAKIEV K, GEORGOULAS P, et al. The use of 3D printing technology in limb reconstruction. Inspirations and challenges[J]. Trauma Case Reports, 2023, 46: 100848. doi: 10.1016/j.tcr.2023.100848
|
| [113] |
HSU A R, ELLINGTON J K. Patient-specific 3-dimensional printed titanium truss cage with tibiotalocalcaneal arthrodesis for salvage of persistent distal tibia nonunion[J]. Foot Ankle Specialist, 2015, 8(6): 483-489. doi: 10.1177/1938640015593079
|
| [114] |
DEKKER T J, STEELE J R, FEDERER A E, et al. Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures[J]. Foot Ankle International, 2018, 39(8): 916-921. doi: 10.1177/1071100718770133
|
| [115] |
ABAR B, KWON N, ALLEN N B, et al. Outcomes of surgical reconstruction using custom 3D-printed porous titanium implants for critical-sized bone defects of the foot and ankle[J]. Foot Ankle International, 2022, 43(6): 750-761. doi: 10.1177/10711007221077113
|
| [116] |
AKHTAR M A, LOW C, TIEMESSEN C, et al. Current challenges and future prospects of osseointegration limb reconstruction for amputees[J]. SN Comprehensive Clinical Medicine, 2023, 6(1): 4. doi: 10.1007/s42399-023-01629-3
|
| [117] |
GU Y, SUN Y, SHUJAAT S, et al. 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review[J]. Journal of Orthopaedic Surgery and Research, 2022, 17(1): 68. doi: 10.1186/s13018-022-02960-6
|
| [118] |
FAN S, TALHA M, YU X, et al. 3D printing of porous Ti6Al4V bone tissue engineering scaffold and surface anodization preparation of nanotubes to enhance its biological property[J]. Nanotechnology Reviews, 2023, 12(1): 20230572. doi: 10.1515/ntrev-2023-0572
|
| [119] |
ZHZO B J, WANG H, YAN R Z, et al. Properties evaluation of a Ti-6Al-4V alloy scaffold fabricated by electron beam melting and selective laser melting for bone tissue engineering[J]. Journal of Biomaterials and Tissue Engineering, 2016, 6(10): 832-842. doi: 10.1166/jbt.2016.1511
|
| [120] |
YAN R, LUO D, HUANG H, et al. Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold[J]. Scientific Reports, 2018, 8(1): 750. doi: 10.1038/s41598-017-15564-6
|
| [121] |
FAN S, LI S, WU Y, et al. Customized 3D‐printed heterogeneous porous titanium scaffolds for bone tissue engineering[J]. MedComm–Biomaterials and Applications, 2024, 3(2): e80.
|
| [122] |
ZHAO L, PEI X, JIANG L, et al. Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair[J]. Composites Part B: Engineering, 2019, 162: 154-161. doi: 10.1016/j.compositesb.2018.10.094
|
| [123] |
LIU X, DENG F, ZHANG M, et al. 3D-printed ellipsoid bionic porous titanium alloy scaffold for promotion of osseointegration[J]. International Journal of Bioprinting, 2025, 11(2): 510-529.
|
| [124] |
WU Y, LIU J, KANG L, et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives[J]. Heliyon, 2023, 9(7): e17718. doi: 10.1016/j.heliyon.2023.e17718
|
| [125] |
LEE J A, KOH Y G, KANG K T. Biomechanical and clinical effect of patient-specific or customized knee implants: a review[J]. Journal Clinical Medicine, 2020, 9(5): 1559. doi: 10.3390/jcm9051559
|
| [126] |
MITRA I, BOSE S, DERNELL W, et al. 3D Printing in alloy design to improve biocompatibility in metallic implants[J], Materials today, 2021, 45: 20-34.
|
| [127] |
AL-TAMIMI A A, ALMEIDA H, BARTOLO P. Structural optimisation for medical implants through additive manufacturing[J]. Progress in Additive Manufacturing, 2020, 5(2): 95-110. doi: 10.1007/s40964-020-00109-7
|
| [128] |
ROUT P K, RATHORE D K, ROY S. Study on Mg-based biodegradable orthopaedic implants and their corrosion behaviour: A Review[J]. Advances in Mechanical and Industrial Engineering, 2022: 277-287.
|
| [129] |
TAN X, TAN Y, CHOW C, et al. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility[J]. Materials Science and Engineering: C, 2017, 76: 1328-1343. doi: 10.1016/j.msec.2017.02.094
|
| [130] |
FROST B A, CAMARERO-ESPINOSA S, FOSTER E J. Materials for the spine: anatomy, problems, and solutions[J]. Materials, 2019, 12(2): 253. doi: 10.3390/ma12020253
|
| [131] |
CHEN S, HO S, CHANG C, et al. Influence of roughness on in-vivo properties of titanium implant surface and their electrochemical behavior[J]. Surface and Coatings Technology, 2016, 302: 215-226. doi: 10.1016/j.surfcoat.2016.06.007
|
| [132] |
KHODAEI M, VALANEZHAD A, I. WATANABE I, et al. Surface and mechanical properties of modified porous titanium scaffold[J]. Surface and Coatings Technology, 2017, 315: 61-66. doi: 10.1016/j.surfcoat.2017.02.032
|
| [133] |
LI C, LI W. Deposition characteristics of titanium coating in cold spraying[J]. Surface and Coatings Technology, 2003, 167(2-3): 278-283. doi: 10.1016/S0257-8972(02)00919-2
|