Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
DAI Mingjie, CHEN Shoujie, WANG Xueyou, ZHANG Xubin, HE Shengping, WANG Qiangqiang. Absorption behavior of TiO2 inclusions by different high titanium steel mold slags[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 117-123. doi: 10.7513/j.issn.1004-7638.2025.06.014
Citation: DAI Mingjie, CHEN Shoujie, WANG Xueyou, ZHANG Xubin, HE Shengping, WANG Qiangqiang. Absorption behavior of TiO2 inclusions by different high titanium steel mold slags[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 117-123. doi: 10.7513/j.issn.1004-7638.2025.06.014

Absorption behavior of TiO2 inclusions by different high titanium steel mold slags

doi: 10.7513/j.issn.1004-7638.2025.06.014
More Information
  • Received Date: 2025-02-12
  • Accepted Date: 2025-03-26
  • Rev Recd Date: 2025-03-20
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • To enhance the inclusion absorption rate of mold slags during continuous casting of high-titanium steel, five candidate high-Ti steel slags were designed. The absorption behaviors and absorption rate differences of TiO2 inclusions by each slag were investigated through a combination of in-situ observation tests and rotating cylinder method with quantitative analysis. SEM-EDS was employed to analyze the interface between TiO2 samples and slags, elucidating the dissolution mechanism of TiO2 in the slag. Results demonstrate that TiO2 dissolution rate was fastest in the CaO-SiO2-BaO slag, followed by the low-basicity CaO-SiO2 slag. Both achieved complete dissolution with shorter durations during the in-situ tests, exhibiting dissolution rates of 0.285 mm/min and 0.281 mm/min respectively in the rotating cylinder tests. Comparatively, TiO2 dissolution rates decreased significantly in the high-basicity CaO-SiO2, CaO-SiO2-Al2O3, and CaO-SiO2-Al2O3-BaO systems, with only the CSAB slag completely dissolving (0.151, 0.101 mm/min, and 0.191 mm/min respectively). The primary inhibition mechanism was identified as the formation of high-melting-point CaTiO3 through reaction between dissolved TiO2 and CaO in the slag, which elevated local viscosity and melting point of the slags.
  • loading
  • [1]
    SHAN L T. The role of titanium in steel[J]. Iron Steel Vanadium Titanium, 1981(2): 85-91. (单麟天. 钛在钢中的作用[J]. 钢铁钒钛, 1981(2): 85-91. doi: 10.7513/j.issn.1004-7638.1981.02.014

    SHAN L T. The role of titanium in steel[J]. Iron Steel Vanadium Titanium, 1981(2): 85-91. doi: 10.7513/j.issn.1004-7638.1981.02.014
    [2]
    YIN X, SUN Y H, YANG Y D, et al. Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2016, 47(6): 3274-3284. doi: 10.1007/s11663-016-0681-2
    [3]
    ZHANG L P, DAVIS C L, STRANGWOOD M. Dependency of fracture toughness on the inhomogeneity of coarse TIN particle distribution in a low alloy steel[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2001, 32(5): 1147-1155. doi: 10.1007/s11661-001-0125-7
    [4]
    MICHELIC S K, BERNHARD C. Experimental study on the behavior of TiN and Ti2O3 inclusions in contact with CaO-Al2O3-SiO2-MgO slags[J]. Scanning, 2017, 2017: 1-14.
    [5]
    HAO Z Q, CHEN, W Q, LIPPOLD C, et al. Kinetics study on the absorption of TiO2 inclusions by mold flux[J]. Special Steel, 2009, 30(5): 13-15. (郝占全, 陈伟庆, LIPPOLD C, 等. 结晶器保护渣吸收TiO2夹杂物的动力学研究[J]. 特殊钢, 2009, 30(5): 13-15.

    HAO Z Q, CHEN, W Q, LIPPOLD C, et al. Kinetics study on the absorption of TiO2 inclusions by mold flux[J]. Special Steel, 2009, 30(5): 13-15.
    [6]
    LI B Y, GENG X, JIANG Z H, et al. Absorption behavior of mold flux on the dissolution of aluminum-titanium inclusions[J]. Continuous Casting, 2020, 231(5): 42-46. (李博洋, 耿鑫, 姜周华, 等. 保护渣对铝钛系夹杂物溶解的吸收规律[J]. 连铸, 2020, 231(5): 42-46.

    LI B Y, GENG X, JIANG Z H, et al. Absorption behavior of mold flux on the dissolution of aluminum-titanium inclusions[J]. Continuous Casting, 2020, 231(5): 42-46.
    [7]
    ZHOU L J, YANG Y, WANG W L, et al. Effect of boron oxide on the dissolution kinetics of TiO2 in mold flux[J]. Continuous Casting, 2021, (6): 54-58, 64. (周乐君, 杨洋, 王万林, 等. 氧化硼对保护渣中TiO2溶解动力学的影响[J]. 连铸, 2021, (6): 54-8, 64.

    ZHOU L J, YANG Y, WANG W L, et al. Effect of boron oxide on the dissolution kinetics of TiO2 in mold flux[J]. Continuous Casting, 2021, (6): 54-58, 64.
    [8]
    CHOI J Y, LEE H G, KIM J S. Dissolution rate of Al2O3 into molten CaO-SiO2-Al2O3 slags[J]. ISIJ INTERNATIONAL, 2002, 42(8): 852-860. doi: 10.2355/isijinternational.42.852
    [9]
    CHEN Z. Fundamental research and application of mold flux for continuous casting of high-titanium alloy steel[D]. Chongqing: Chongqing University, 2019. (陈卓. 高钛合金钢连铸保护渣基础研究及应用[D]. 重庆: 重庆大学, 2019.

    CHEN Z. Fundamental research and application of mold flux for continuous casting of high-titanium alloy steel[D]. Chongqing: Chongqing University, 2019.
    [10]
    ZHANG Z T, LI J, LIU P. Crystallization behavior in fluoride-free mold fluxes containing TiO2/ZrO2[J]. Journal of Iron and Steel Research International, 2011, 18(5): 31-37. doi: 10.1016/S1006-706X(11)60061-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (30) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return