| Citation: | DAI Mingjie, CHEN Shoujie, WANG Xueyou, ZHANG Xubin, HE Shengping, WANG Qiangqiang. Absorption behavior of TiO2 inclusions by different high titanium steel mold slags[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 117-123. doi: 10.7513/j.issn.1004-7638.2025.06.014 |
| [1] |
SHAN L T. The role of titanium in steel[J]. Iron Steel Vanadium Titanium, 1981(2): 85-91. (单麟天. 钛在钢中的作用[J]. 钢铁钒钛, 1981(2): 85-91. doi: 10.7513/j.issn.1004-7638.1981.02.014
SHAN L T. The role of titanium in steel[J]. Iron Steel Vanadium Titanium, 1981(2): 85-91. doi: 10.7513/j.issn.1004-7638.1981.02.014
|
| [2] |
YIN X, SUN Y H, YANG Y D, et al. Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2016, 47(6): 3274-3284. doi: 10.1007/s11663-016-0681-2
|
| [3] |
ZHANG L P, DAVIS C L, STRANGWOOD M. Dependency of fracture toughness on the inhomogeneity of coarse TIN particle distribution in a low alloy steel[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2001, 32(5): 1147-1155. doi: 10.1007/s11661-001-0125-7
|
| [4] |
MICHELIC S K, BERNHARD C. Experimental study on the behavior of TiN and Ti2O3 inclusions in contact with CaO-Al2O3-SiO2-MgO slags[J]. Scanning, 2017, 2017: 1-14.
|
| [5] |
HAO Z Q, CHEN, W Q, LIPPOLD C, et al. Kinetics study on the absorption of TiO2 inclusions by mold flux[J]. Special Steel, 2009, 30(5): 13-15. (郝占全, 陈伟庆, LIPPOLD C, 等. 结晶器保护渣吸收TiO2夹杂物的动力学研究[J]. 特殊钢, 2009, 30(5): 13-15.
HAO Z Q, CHEN, W Q, LIPPOLD C, et al. Kinetics study on the absorption of TiO2 inclusions by mold flux[J]. Special Steel, 2009, 30(5): 13-15.
|
| [6] |
LI B Y, GENG X, JIANG Z H, et al. Absorption behavior of mold flux on the dissolution of aluminum-titanium inclusions[J]. Continuous Casting, 2020, 231(5): 42-46. (李博洋, 耿鑫, 姜周华, 等. 保护渣对铝钛系夹杂物溶解的吸收规律[J]. 连铸, 2020, 231(5): 42-46.
LI B Y, GENG X, JIANG Z H, et al. Absorption behavior of mold flux on the dissolution of aluminum-titanium inclusions[J]. Continuous Casting, 2020, 231(5): 42-46.
|
| [7] |
ZHOU L J, YANG Y, WANG W L, et al. Effect of boron oxide on the dissolution kinetics of TiO2 in mold flux[J]. Continuous Casting, 2021, (6): 54-58, 64. (周乐君, 杨洋, 王万林, 等. 氧化硼对保护渣中TiO2溶解动力学的影响[J]. 连铸, 2021, (6): 54-8, 64.
ZHOU L J, YANG Y, WANG W L, et al. Effect of boron oxide on the dissolution kinetics of TiO2 in mold flux[J]. Continuous Casting, 2021, (6): 54-58, 64.
|
| [8] |
CHOI J Y, LEE H G, KIM J S. Dissolution rate of Al2O3 into molten CaO-SiO2-Al2O3 slags[J]. ISIJ INTERNATIONAL, 2002, 42(8): 852-860. doi: 10.2355/isijinternational.42.852
|
| [9] |
CHEN Z. Fundamental research and application of mold flux for continuous casting of high-titanium alloy steel[D]. Chongqing: Chongqing University, 2019. (陈卓. 高钛合金钢连铸保护渣基础研究及应用[D]. 重庆: 重庆大学, 2019.
CHEN Z. Fundamental research and application of mold flux for continuous casting of high-titanium alloy steel[D]. Chongqing: Chongqing University, 2019.
|
| [10] |
ZHANG Z T, LI J, LIU P. Crystallization behavior in fluoride-free mold fluxes containing TiO2/ZrO2[J]. Journal of Iron and Steel Research International, 2011, 18(5): 31-37. doi: 10.1016/S1006-706X(11)60061-7
|