Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
WANG Tianle, GUO Minghui, ZHENG Xinyu, FENG Qi, XIE Xin, GUAN Jianchao, SUN Yanhui. Research on solidification heat transfer and reduction position of grade E355 slab[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 124-130. doi: 10.7513/j.issn.1004-7638.2025.06.015
Citation: WANG Tianle, GUO Minghui, ZHENG Xinyu, FENG Qi, XIE Xin, GUAN Jianchao, SUN Yanhui. Research on solidification heat transfer and reduction position of grade E355 slab[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 124-130. doi: 10.7513/j.issn.1004-7638.2025.06.015

Research on solidification heat transfer and reduction position of grade E355 slab

doi: 10.7513/j.issn.1004-7638.2025.06.015
More Information
  • Received Date: 2025-06-20
  • Accepted Date: 2025-09-15
  • Rev Recd Date: 2025-08-29
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • In order to improve the quality of grade E355 slab, based on the existing process conditions numerical simulation, had been conducted to investigate the influences of casting speed, water ratio and superheat on the solidification process of the slab and the position of the soft reduction. Based on the simulation results, theoretically optimal production conditions for this steel grade have been obtained as follows: casting speed is 1.1 m/min, water ratio is 0.66 L/kg, superheat is 10℃, the area of soft reduction is located at a distance of 17.8 m to 21.1 m from the concave surface. According to production data, the soft reduction position should be in segment 7-9.
  • loading
  • [1]
    WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. (卫广运, 张瑞忠, 郭子强, 等. 连铸坯压下技术发展与应用[J]. 河北冶金, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406

    WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406
    [2]
    CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33. (蔡开科, 孙彦辉, 倪有金. 连铸坯凝固结构的形成与控制[C]. 第五期连铸电磁搅拌技术学习研讨班, 中国福建厦门, 2008: 33.

    CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33.
    [3]
    LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. (刘添, 李曜光, 孙彦辉, 等. 82B小方坯凝固组织和偏析预测模型开发及应用[J]. 连铸, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130

    LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130
    [4]
    ZHENG X Y, SUN Y H, FENG Z H, et al. Numerical simulation of the effect of transverse non-uniform cooling on solidification end shape and centerline segregation in ultra-thick slabs[J]. Metallurgical and Materials Transactions B, 2025.
    [5]
    ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. (郑鑫钰, 孙彦辉, 丰琦, 等. Q345R厚板坯连铸凝固过程数值模拟[J]. 钢铁钒钛, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018

    ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018
    [6]
    WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. (王璐, 孙彦辉, 牛阿朋, 等. X80板坯传热凝固数值模拟[J]. 钢铁钒钛, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023

    WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023
    [7]
    LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022. (李曜光. 连铸过程宏观传输现象及中心偏析的模拟研究[D]. 北京: 北京科技大学, 2022.

    LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022.
    [8]
    FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. (丰琦, 郑鑫钰, 杨建, 等. 42CrMoA钢凝固组织数值模拟[J]. 连铸, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059

    FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059
    [9]
    GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140. (高擎, 杨文志, 杨建, 等. 50CrV连铸大方坯凝固末端电磁搅拌位置优化[J]. 钢铁钒钛, 2025, 46(1): 133-140.

    GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140.
    [10]
    GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025. (耿豪. 低合金钢板坯与轧材均质化控制研究[D]. 北京: 北京科技大学, 2025.

    GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025.
    [11]
    LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. (李红光, 徐明丽, 冯元超, 等. 重轨钢连铸大方坯V型偏析形成分析[J]. 钢铁钒钛, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027

    LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027
    [12]
    GUAN R, JI C, ZHU M Y. Modeling the effect of combined electromagnetic stirring modes on macrosegregation in continuous casting blooms[J]. Metallurgical and Materials Transactions B, 2020, 51(3): 1137-1153. doi: 10.1007/s11663-020-01827-7
    [13]
    FENG Y, THOMAS B G, SENGUPTA J, et al. Multi-scale and multi-physics simulation of central segregation in an equiaxed dendritic mushy zone during continuous casting of steel[J]. Materialia, 2024, 33: 102003. doi: 10.1016/j.mtla.2023.102003
    [14]
    ZHONG H G, WANG R J, HAN Q Y, et al. Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions[J]. Journal of Materials Research and Technology, 2022, 20: 3408-3419. doi: 10.1016/j.jmrt.2022.08.115
    [15]
    FENG Z, ZHANG G, LI P, et al. Numerical simulation of fluid flow, solidification, and solute distribution in billets under combined mold and final electromagnetic stirring[J]. Materials, 2024, 17(2): 530. doi: 10.3390/ma17020530
    [16]
    LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. (鲁素玲, 李江南, 郭志红, 等. GCr15轴承钢方坯连铸凝固组织数值模拟研究[J]. 特种铸造及有色合金, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500

    LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500
    [17]
    MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008. (马玉堂. 大方坯连铸机动态轻压下过程控制系统开发与应用[D]. 沈阳: 东北大学, 2008.

    MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008.
    [18]
    AN H H, BAO Y P, WANG M, et al. Numerical and experimental investigation of solidification structure evolution and reduction of centre segregation in continuously cast GCr15 bloom[J]. Ironmaking & Steelmaking, 2020, 47(9): 1063-1077.
    [19]
    LI Y G, CHEN W Q, SUN Y H. Analysis of macrosegregation during slab continuous casting using 3D-longitudinal 2D hybrid model[J]. Ironmaking & Steelmaking, 2023, 50(7): 794-808.
    [20]
    JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8. (祭程, 关锐, 朱苗勇, 等. 重轨钢凝固末端机械压下对溶质偏析行为的影响[C]. 第十二届中国钢铁年会, 中国北京, 2019: 8.

    JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (19) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return