| Citation: | WANG Tianle, GUO Minghui, ZHENG Xinyu, FENG Qi, XIE Xin, GUAN Jianchao, SUN Yanhui. Research on solidification heat transfer and reduction position of grade E355 slab[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 124-130. doi: 10.7513/j.issn.1004-7638.2025.06.015 |
| [1] |
WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. (卫广运, 张瑞忠, 郭子强, 等. 连铸坯压下技术发展与应用[J]. 河北冶金, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406
WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406
|
| [2] |
CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33. (蔡开科, 孙彦辉, 倪有金. 连铸坯凝固结构的形成与控制[C]. 第五期连铸电磁搅拌技术学习研讨班, 中国福建厦门, 2008: 33.
CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33.
|
| [3] |
LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. (刘添, 李曜光, 孙彦辉, 等. 82B小方坯凝固组织和偏析预测模型开发及应用[J]. 连铸, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130
LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130
|
| [4] |
ZHENG X Y, SUN Y H, FENG Z H, et al. Numerical simulation of the effect of transverse non-uniform cooling on solidification end shape and centerline segregation in ultra-thick slabs[J]. Metallurgical and Materials Transactions B, 2025.
|
| [5] |
ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. (郑鑫钰, 孙彦辉, 丰琦, 等. Q345R厚板坯连铸凝固过程数值模拟[J]. 钢铁钒钛, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018
ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018
|
| [6] |
WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. (王璐, 孙彦辉, 牛阿朋, 等. X80板坯传热凝固数值模拟[J]. 钢铁钒钛, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023
WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023
|
| [7] |
LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022. (李曜光. 连铸过程宏观传输现象及中心偏析的模拟研究[D]. 北京: 北京科技大学, 2022.
LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022.
|
| [8] |
FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. (丰琦, 郑鑫钰, 杨建, 等. 42CrMoA钢凝固组织数值模拟[J]. 连铸, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059
FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059
|
| [9] |
GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140. (高擎, 杨文志, 杨建, 等. 50CrV连铸大方坯凝固末端电磁搅拌位置优化[J]. 钢铁钒钛, 2025, 46(1): 133-140.
GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140.
|
| [10] |
GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025. (耿豪. 低合金钢板坯与轧材均质化控制研究[D]. 北京: 北京科技大学, 2025.
GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025.
|
| [11] |
LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. (李红光, 徐明丽, 冯元超, 等. 重轨钢连铸大方坯V型偏析形成分析[J]. 钢铁钒钛, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027
LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027
|
| [12] |
GUAN R, JI C, ZHU M Y. Modeling the effect of combined electromagnetic stirring modes on macrosegregation in continuous casting blooms[J]. Metallurgical and Materials Transactions B, 2020, 51(3): 1137-1153. doi: 10.1007/s11663-020-01827-7
|
| [13] |
FENG Y, THOMAS B G, SENGUPTA J, et al. Multi-scale and multi-physics simulation of central segregation in an equiaxed dendritic mushy zone during continuous casting of steel[J]. Materialia, 2024, 33: 102003. doi: 10.1016/j.mtla.2023.102003
|
| [14] |
ZHONG H G, WANG R J, HAN Q Y, et al. Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions[J]. Journal of Materials Research and Technology, 2022, 20: 3408-3419. doi: 10.1016/j.jmrt.2022.08.115
|
| [15] |
FENG Z, ZHANG G, LI P, et al. Numerical simulation of fluid flow, solidification, and solute distribution in billets under combined mold and final electromagnetic stirring[J]. Materials, 2024, 17(2): 530. doi: 10.3390/ma17020530
|
| [16] |
LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. (鲁素玲, 李江南, 郭志红, 等. GCr15轴承钢方坯连铸凝固组织数值模拟研究[J]. 特种铸造及有色合金, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500
LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500
|
| [17] |
MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008. (马玉堂. 大方坯连铸机动态轻压下过程控制系统开发与应用[D]. 沈阳: 东北大学, 2008.
MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008.
|
| [18] |
AN H H, BAO Y P, WANG M, et al. Numerical and experimental investigation of solidification structure evolution and reduction of centre segregation in continuously cast GCr15 bloom[J]. Ironmaking & Steelmaking, 2020, 47(9): 1063-1077.
|
| [19] |
LI Y G, CHEN W Q, SUN Y H. Analysis of macrosegregation during slab continuous casting using 3D-longitudinal 2D hybrid model[J]. Ironmaking & Steelmaking, 2023, 50(7): 794-808.
|
| [20] |
JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8. (祭程, 关锐, 朱苗勇, 等. 重轨钢凝固末端机械压下对溶质偏析行为的影响[C]. 第十二届中国钢铁年会, 中国北京, 2019: 8.
JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8.
|