| Citation: | YANG Jun, QIN Kui, OU Ping, WANG Hebin, LI Chengbo, WEI Chunhui, QIN Anting. Study on aging strengthening of Fe-22Mn-0.6C-3.5Cu-0.3V high-manganese TWIP steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 131-137. doi: 10.7513/j.issn.1004-7638.2025.06.016 |
| [1] |
BOJA M F S, GIORDANA M F, BANEGAS S, et al. Twinning-induced plasticity steel for the automotive industry: design stress for gas tungsten arc welded parts[J]. Journal of Materials Engineering and Performance, 2025, 34(4): 3182-3196. doi: 10.1007/s11665-024-09257-1
|
| [2] |
LI X, MA T, CAO Y P, et al. Research progress on fault energy and mechanism of TWIP steel layers[J]. Hot Working Technology, 2019, 48(16): 13-17. (李欣, 马涛, 曹玉鹏, 等. TWIP钢层错能及机理的研究进展[J]. 热加工工艺, 2019, 48(16): 13-17.
LI X, MA T, CAO Y P, et al. Research progress on fault energy and mechanism of TWIP steel layers[J]. Hot Working Technology, 2019, 48(16): 13-17.
|
| [3] |
ZENG Z Y, LUO X. Study on the influence of Si addition on the mechanical properties of high Mn-N type TWIP stainless steels[J]. Iron Steel Vanadium Titanium, 2024, 45(4): 170-175. (曾泽瑶, 罗许. Si添加对高Mn-N型TWIP不锈钢力学性能的影响研究[J]. 钢铁钒钛, 2024, 45(4): 170-175.
ZENG Z Y, LUO X. Study on the influence of Si addition on the mechanical properties of high Mn-N type TWIP stainless steels[J]. Iron Steel Vanadium Titanium, 2024, 45(4): 170-175.
|
| [4] |
COOMAN B C D, ESTRIN Y, KIM S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283-362. doi: 10.1016/j.actamat.2017.06.046
|
| [5] |
HWANG J K. Deformation behaviors of various Fe-Mn-C twinning-induced plasticity steels: effect of stacking fault energy and chemical composition[J]. Journal of Materials Science, 2020, 55(4): 1779-1795. doi: 10.1007/s10853-019-04018-1
|
| [6] |
LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, et al. Effect of V microalloying in the hot working behavior of high Mn TWIP steels[J]. Iron Steel Vanadium Titanium, 2015, 36(6): 68-73, 93. (LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, 等. 钒微合金化对高锰TWIP钢热加工行为的影响[J]. 钢铁钒钛, 2015, 36(6): 68-73, 93.
LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, et al. Effect of V microalloying in the hot working behavior of high Mn TWIP steels[J]. Iron Steel Vanadium Titanium, 2015, 36(6): 68-73, 93.
|
| [7] |
ISHEIM D, VAYNMAN S, FINE M E, et al. Copper-precipitation hardening in a non-ferromagnetic face-centered cubic austenitic steel[J]. Scripta Materialia, 2008, 59(12): 1235-1238. doi: 10.1016/j.scriptamat.2008.07.045
|
| [8] |
JI J N. Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite[D]. Harbin: Harbin Engineering University, 2020. (纪佳楠. 高锰奥氏体钢中富铜纳米相析出行为及强化机制研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
JI J N. Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite[D]. Harbin: Harbin Engineering University, 2020.
|
| [9] |
SCOTT C, REMY B, COLLET J L, et al. Precipitation strengthening in high manganese austenitic TWIP steels[J]. International Journal of Materials Research, 2011, 102(5): 538-549. doi: 10.3139/146.110508
|
| [10] |
ZHANG Z B, LIU Z Y, ZHANG W N. Effect of VC particles on the strain hardening behavior of twip steel[J]. Acta Metall Sinica, 2012, 48(9): 1067-1073. (张志波, 刘振宇, 张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报, 2012, 48(9): 1067-1073. doi: 10.3724/SP.J.1037.2012.00094
ZHANG Z B, LIU Z Y, ZHANG W N. Effect of VC particles on the strain hardening behavior of twip steel[J]. Acta Metall Sinica, 2012, 48(9): 1067-1073. doi: 10.3724/SP.J.1037.2012.00094
|
| [11] |
JIANG S H, WANG H, WU Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651): 460-464. doi: 10.1038/nature22032
|
| [12] |
SHEN Q, WANG X J, ZHAO A Y, et al. Effects of Mn on multi-precipitates evolution of Cu-rich and NiAl phase in steels[J]. Acta Metall Sinica, 2016, 52(5): 513-518. (沈琴, 王晓姣, 赵安宇, 等. Mn对钢中富Cu相和NiAl相复合析出过程的影响[J]. 金属学报, 2016, 52(5): 513-518.
SHEN Q, WANG X J, ZHAO A Y, et al. Effects of Mn on multi-precipitates evolution of Cu-rich and NiAl phase in steels[J]. Acta Metall Sinica, 2016, 52(5): 513-518.
|
| [13] |
DU Y B, HU X F, ZHANG S Q, et al. Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel[J]. Materials Characterization, 2022, 190: 112014. doi: 10.1016/j.matchar.2022.112014
|
| [14] |
JIAO Z B, LUAN J H, MILLER M K, et al. Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels[J]. Acta Materialia, 2016, 110: 31-43. doi: 10.1016/j.actamat.2016.03.024
|
| [15] |
YANG X C, DI X J, WANG J S, et al. The co-precipitation evolution of NiAl and Cu nanoparticles and its influence on strengthening and toughening mechanisms in low-carbon ultra-high strength martensite seamless tube steel[J]. International Journal of Plasticity, 2023, 166: 103654. doi: 10.1016/j.ijplas.2023.103654
|
| [16] |
MILLÁN J, SANDLÖBES S, AL-ZUBI A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels[J]. Acta Materialia, 2014, 76: 94-105. doi: 10.1016/j.actamat.2014.05.016
|
| [17] |
KAN L Y, YE Q B, WANG Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Materials Science and Engineering A, 2021, 802: 140678. doi: 10.1016/j.msea.2020.140678
|
| [18] |
WANG J Q, RUAN H H, DING Z Y, et al. A novel maraging stainless steel ultra-high-strengthened by multi-nanoprecipitations[J]. Scripta Materialia, 2023, 226: 115224. doi: 10.1016/j.scriptamat.2022.115224
|
| [19] |
LIEM S Y, KRESSE G, CLARKE J H R. First principles calculation of oxygen adsorption and reconstruction of Cu (110) surface[J]. Surface Science, 1998, 415(1): 194-211.
|
| [20] |
CURTZE S, KUOKKALA V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58(15): 5129-5141. doi: 10.1016/j.actamat.2010.05.049
|
| [21] |
HU G X, CAI X, RONG Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010. (胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010.
HU G X, CAI X, RONG Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010.
|
| [22] |
RONG Y H. Introduction to analytical electron microscopy[M]. Beijing : Higher Education Press, 2006. (戎咏华. 分析电子显微学导论[M]. 北京: 高等教育出版社, 2006.
RONG Y H. Introduction to analytical electron microscopy[M]. Beijing : Higher Education Press, 2006.
|
| [23] |
AN F C, ZHANG Y, WANG J J, et al. Precipitation process of vanadium carbide in M23C6 by atomic-scale configuration analysis[J]. Journal of Materials Science, 2020, 55: 762-773. doi: 10.1007/s10853-019-03965-z
|
| [24] |
MARTIN J W. Precipitation hardening: theory and applications[M]. Oxford: Butterworth-Heinemann, 2012.
|
| [25] |
CHO H J, CHO Y, KIM S J. Simultaneous enhancement of tensile properties and hydrogen embrittlement resistance in Cu-bearing austenitic stainless steel[J]. Metals and Materials International, 2025, 31(6): 1515-1525. doi: 10.1007/s12540-024-01835-1
|
| [26] |
CHI C Y, YU H Y, DONG J X, et al. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application[J]. Progress in Natural Science: Materials International, 2012, 22(3): 175-185. doi: 10.1016/j.pnsc.2012.05.002
|
| [27] |
FINE M E, ISHEIM D. Origin of copper precipitation strengthening in steel revisited[J]. Scripta Materialia, 2005, 53(1): 115-118. doi: 10.1016/j.scriptamat.2005.02.034
|
| [28] |
FRIEDEL J. Dislocations[M]. London: Pergamon Press, 1964.
|
| [29] |
BROWN L M, HAM P K. Strengthening methods in crystals[M]. KELLY A, NICHOLSON R B (Eds. ). London: Applied Science Publishers, 1965: 3-135.
|
| [30] |
MARTIN J W. Precipitation Hardening[M]. Oxford: Butterworth-Heinemann, 1998.
|
| [31] |
MURR L E. Interfacial phenomena in metals and alloys[M]. Boston: Addison Wesley, 1975.
|
| [32] |
GUTIERREZ-URRUTIA I, RAABE D. Dislocation and twin substructure evolution during strain hardening of an Fe–22wt. % Mn–0.6wt. % C TWIP steel observed by electron channeling contrast imaging[J]. Acta Materialia, 2011, 59(16): 6449-6462. doi: 10.1016/j.actamat.2011.07.009
|
| [33] |
HIRSCH P B, KELLY A. Stacking-fault strengthening[J]. Philosophical Magazine, 1965, 12(119): 881-900. doi: 10.1080/14786436508228118
|
| [34] |
MONZEN R, KITA K. Ostwald ripening of spherical Fe particles in Cu-Fe alloys[J]. Philosophical Magazine Letters, 2002, 82(7): 373-382. doi: 10.1080/09500830210137399
|
| [35] |
HAJO D. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review[J]. Journal of Material Science, 2011, 46: 289-306. doi: 10.1007/s10853-010-5010-6
|