Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
YANG Jun, QIN Kui, OU Ping, WANG Hebin, LI Chengbo, WEI Chunhui, QIN Anting. Study on aging strengthening of Fe-22Mn-0.6C-3.5Cu-0.3V high-manganese TWIP steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 131-137. doi: 10.7513/j.issn.1004-7638.2025.06.016
Citation: YANG Jun, QIN Kui, OU Ping, WANG Hebin, LI Chengbo, WEI Chunhui, QIN Anting. Study on aging strengthening of Fe-22Mn-0.6C-3.5Cu-0.3V high-manganese TWIP steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 131-137. doi: 10.7513/j.issn.1004-7638.2025.06.016

Study on aging strengthening of Fe-22Mn-0.6C-3.5Cu-0.3V high-manganese TWIP steel

doi: 10.7513/j.issn.1004-7638.2025.06.016
More Information
  • Received Date: 2025-06-03
  • Accepted Date: 2025-07-24
  • Rev Recd Date: 2025-07-06
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • Solid solution and aging treatment had been conducted on Fe-22Mn-0.6C-3.5Cu-0.3V high-manganese TWIP steel prepared by melting, and the precipitation behavior during aging as well as the associated strengthening mechanisms had been investigated. The results show that the matrix in both solid solution and aging-treated high-manganese TWIP steels is austenitic structure. After aging treatment, nano-sized Cu-rich phases and VC carbides precipitate in the austenitic matrix, both of them show a cube-on-cube orientation relationship with the matrix. The interface between Cu-rich phase and austenitic matrix is coherent, while the VC carbide is non-coherent. The tensile properties at room temperature indicates the precipitation of Cu-rich phase and VC carbide can significantly increase the yield strength of high-manganese TWIP steel. The yield strength of aging-treated steel is increased by 60.6% higher than that of solid solution-treated steel. The yield shear stress increment calculated based on the precipitation strengthening theory is good agreement with the experimental results. The strength contribution from dislocation shear strengthening mechanism of Cu-rich phase accounts for 60.8% of the increment, while that from dislocation bypass strengthening mechanism of VC carbide accounts for 39.2% of the increment.
  • loading
  • [1]
    BOJA M F S, GIORDANA M F, BANEGAS S, et al. Twinning-induced plasticity steel for the automotive industry: design stress for gas tungsten arc welded parts[J]. Journal of Materials Engineering and Performance, 2025, 34(4): 3182-3196. doi: 10.1007/s11665-024-09257-1
    [2]
    LI X, MA T, CAO Y P, et al. Research progress on fault energy and mechanism of TWIP steel layers[J]. Hot Working Technology, 2019, 48(16): 13-17. (李欣, 马涛, 曹玉鹏, 等. TWIP钢层错能及机理的研究进展[J]. 热加工工艺, 2019, 48(16): 13-17.

    LI X, MA T, CAO Y P, et al. Research progress on fault energy and mechanism of TWIP steel layers[J]. Hot Working Technology, 2019, 48(16): 13-17.
    [3]
    ZENG Z Y, LUO X. Study on the influence of Si addition on the mechanical properties of high Mn-N type TWIP stainless steels[J]. Iron Steel Vanadium Titanium, 2024, 45(4): 170-175. (曾泽瑶, 罗许. Si添加对高Mn-N型TWIP不锈钢力学性能的影响研究[J]. 钢铁钒钛, 2024, 45(4): 170-175.

    ZENG Z Y, LUO X. Study on the influence of Si addition on the mechanical properties of high Mn-N type TWIP stainless steels[J]. Iron Steel Vanadium Titanium, 2024, 45(4): 170-175.
    [4]
    COOMAN B C D, ESTRIN Y, KIM S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283-362. doi: 10.1016/j.actamat.2017.06.046
    [5]
    HWANG J K. Deformation behaviors of various Fe-Mn-C twinning-induced plasticity steels: effect of stacking fault energy and chemical composition[J]. Journal of Materials Science, 2020, 55(4): 1779-1795. doi: 10.1007/s10853-019-04018-1
    [6]
    LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, et al. Effect of V microalloying in the hot working behavior of high Mn TWIP steels[J]. Iron Steel Vanadium Titanium, 2015, 36(6): 68-73, 93. (LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, 等. 钒微合金化对高锰TWIP钢热加工行为的影响[J]. 钢铁钒钛, 2015, 36(6): 68-73, 93.

    LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, et al. Effect of V microalloying in the hot working behavior of high Mn TWIP steels[J]. Iron Steel Vanadium Titanium, 2015, 36(6): 68-73, 93.
    [7]
    ISHEIM D, VAYNMAN S, FINE M E, et al. Copper-precipitation hardening in a non-ferromagnetic face-centered cubic austenitic steel[J]. Scripta Materialia, 2008, 59(12): 1235-1238. doi: 10.1016/j.scriptamat.2008.07.045
    [8]
    JI J N. Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite[D]. Harbin: Harbin Engineering University, 2020. (纪佳楠. 高锰奥氏体钢中富铜纳米相析出行为及强化机制研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.

    JI J N. Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite[D]. Harbin: Harbin Engineering University, 2020.
    [9]
    SCOTT C, REMY B, COLLET J L, et al. Precipitation strengthening in high manganese austenitic TWIP steels[J]. International Journal of Materials Research, 2011, 102(5): 538-549. doi: 10.3139/146.110508
    [10]
    ZHANG Z B, LIU Z Y, ZHANG W N. Effect of VC particles on the strain hardening behavior of twip steel[J]. Acta Metall Sinica, 2012, 48(9): 1067-1073. (张志波, 刘振宇, 张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报, 2012, 48(9): 1067-1073. doi: 10.3724/SP.J.1037.2012.00094

    ZHANG Z B, LIU Z Y, ZHANG W N. Effect of VC particles on the strain hardening behavior of twip steel[J]. Acta Metall Sinica, 2012, 48(9): 1067-1073. doi: 10.3724/SP.J.1037.2012.00094
    [11]
    JIANG S H, WANG H, WU Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651): 460-464. doi: 10.1038/nature22032
    [12]
    SHEN Q, WANG X J, ZHAO A Y, et al. Effects of Mn on multi-precipitates evolution of Cu-rich and NiAl phase in steels[J]. Acta Metall Sinica, 2016, 52(5): 513-518. (沈琴, 王晓姣, 赵安宇, 等. Mn对钢中富Cu相和NiAl相复合析出过程的影响[J]. 金属学报, 2016, 52(5): 513-518.

    SHEN Q, WANG X J, ZHAO A Y, et al. Effects of Mn on multi-precipitates evolution of Cu-rich and NiAl phase in steels[J]. Acta Metall Sinica, 2016, 52(5): 513-518.
    [13]
    DU Y B, HU X F, ZHANG S Q, et al. Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel[J]. Materials Characterization, 2022, 190: 112014. doi: 10.1016/j.matchar.2022.112014
    [14]
    JIAO Z B, LUAN J H, MILLER M K, et al. Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels[J]. Acta Materialia, 2016, 110: 31-43. doi: 10.1016/j.actamat.2016.03.024
    [15]
    YANG X C, DI X J, WANG J S, et al. The co-precipitation evolution of NiAl and Cu nanoparticles and its influence on strengthening and toughening mechanisms in low-carbon ultra-high strength martensite seamless tube steel[J]. International Journal of Plasticity, 2023, 166: 103654. doi: 10.1016/j.ijplas.2023.103654
    [16]
    MILLÁN J, SANDLÖBES S, AL-ZUBI A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels[J]. Acta Materialia, 2014, 76: 94-105. doi: 10.1016/j.actamat.2014.05.016
    [17]
    KAN L Y, YE Q B, WANG Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Materials Science and Engineering A, 2021, 802: 140678. doi: 10.1016/j.msea.2020.140678
    [18]
    WANG J Q, RUAN H H, DING Z Y, et al. A novel maraging stainless steel ultra-high-strengthened by multi-nanoprecipitations[J]. Scripta Materialia, 2023, 226: 115224. doi: 10.1016/j.scriptamat.2022.115224
    [19]
    LIEM S Y, KRESSE G, CLARKE J H R. First principles calculation of oxygen adsorption and reconstruction of Cu (110) surface[J]. Surface Science, 1998, 415(1): 194-211.
    [20]
    CURTZE S, KUOKKALA V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58(15): 5129-5141. doi: 10.1016/j.actamat.2010.05.049
    [21]
    HU G X, CAI X, RONG Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010. (胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010.

    HU G X, CAI X, RONG Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010.
    [22]
    RONG Y H. Introduction to analytical electron microscopy[M]. Beijing : Higher Education Press, 2006. (戎咏华. 分析电子显微学导论[M]. 北京: 高等教育出版社, 2006.

    RONG Y H. Introduction to analytical electron microscopy[M]. Beijing : Higher Education Press, 2006.
    [23]
    AN F C, ZHANG Y, WANG J J, et al. Precipitation process of vanadium carbide in M23C6 by atomic-scale configuration analysis[J]. Journal of Materials Science, 2020, 55: 762-773. doi: 10.1007/s10853-019-03965-z
    [24]
    MARTIN J W. Precipitation hardening: theory and applications[M]. Oxford: Butterworth-Heinemann, 2012.
    [25]
    CHO H J, CHO Y, KIM S J. Simultaneous enhancement of tensile properties and hydrogen embrittlement resistance in Cu-bearing austenitic stainless steel[J]. Metals and Materials International, 2025, 31(6): 1515-1525. doi: 10.1007/s12540-024-01835-1
    [26]
    CHI C Y, YU H Y, DONG J X, et al. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application[J]. Progress in Natural Science: Materials International, 2012, 22(3): 175-185. doi: 10.1016/j.pnsc.2012.05.002
    [27]
    FINE M E, ISHEIM D. Origin of copper precipitation strengthening in steel revisited[J]. Scripta Materialia, 2005, 53(1): 115-118. doi: 10.1016/j.scriptamat.2005.02.034
    [28]
    FRIEDEL J. Dislocations[M]. London: Pergamon Press, 1964.
    [29]
    BROWN L M, HAM P K. Strengthening methods in crystals[M]. KELLY A, NICHOLSON R B (Eds. ). London: Applied Science Publishers, 1965: 3-135.
    [30]
    MARTIN J W. Precipitation Hardening[M]. Oxford: Butterworth-Heinemann, 1998.
    [31]
    MURR L E. Interfacial phenomena in metals and alloys[M]. Boston: Addison Wesley, 1975.
    [32]
    GUTIERREZ-URRUTIA I, RAABE D. Dislocation and twin substructure evolution during strain hardening of an Fe–22wt. % Mn–0.6wt. % C TWIP steel observed by electron channeling contrast imaging[J]. Acta Materialia, 2011, 59(16): 6449-6462. doi: 10.1016/j.actamat.2011.07.009
    [33]
    HIRSCH P B, KELLY A. Stacking-fault strengthening[J]. Philosophical Magazine, 1965, 12(119): 881-900. doi: 10.1080/14786436508228118
    [34]
    MONZEN R, KITA K. Ostwald ripening of spherical Fe particles in Cu-Fe alloys[J]. Philosophical Magazine Letters, 2002, 82(7): 373-382. doi: 10.1080/09500830210137399
    [35]
    HAJO D. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review[J]. Journal of Material Science, 2011, 46: 289-306. doi: 10.1007/s10853-010-5010-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (18) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return