| Citation: | LI Yanjie, TIAN Xiugang, YANG Yang, LI Zhe, ZHANG Chunhua, SUN Qiaomei, ZHANG Dazheng. The effect of hot rolling process on the microstructure and properties of grade E microalloyed angle steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 138-146. doi: 10.7513/j.issn.1004-7638.2025.06.017 |
| [1] |
HE C H. Development trend of steel used for transmission towers[J]. Electric Power Construction, 2010, 31(1): 45-48. (何长华. 输电线路铁塔用钢的发展趋势[J]. 电力建设, 2010, 31(1): 45-48. doi: 10.3969/j.issn.1000-7229.2010.01.012
HE C H. Development trend of steel used for transmission towers[J]. Electric Power Construction, 2010, 31(1): 45-48. doi: 10.3969/j.issn.1000-7229.2010.01.012
|
| [2] |
HUANG W, ZHANG Z Q, GAO Z F, et al. Research and development of high-performance bridge steel abroad[J]. World Bridges, 2011(2): 18-21. (黄维, 张志勤, 高真凤, 等. 国外高性能桥梁用钢的研发[J]. 世界桥梁, 2011(2): 18-21. doi: 10.3969/j.issn.1671-7767.2011.02.006
HUANG W, ZHANG Z Q, GAO Z F, et al. Research and development of high-performance bridge steel abroad[J]. World Bridges, 2011(2): 18-21. doi: 10.3969/j.issn.1671-7767.2011.02.006
|
| [3] |
LÜ S L, CHEN J, LIU D, et al. Overview of progress of high-performance construction steel[J]. Hot Working Technolog, 2020, 49(14): 11-15. (吕尚霖, 陈洁, 刘冬, 等. 高性能化建筑钢材的进展概述[J]. 热加工工艺, 2020, 49(14): 11-15. doi: 10.14158/j.cnki.1001-3814.20191659
LÜ S L, CHEN J, LIU D, et al. Overview of progress of high-performance construction steel[J]. Hot Working Technolog, 2020, 49(14): 11-15. doi: 10.14158/j.cnki.1001-3814.20191659
|
| [4] |
ROBERT O R. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822. doi: 10.1038/nmat3115
|
| [5] |
SONG L Q, ZUO J, SHE G F, et al. Research on strength and toughness of ultre-fine grain steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 1-5. (宋立秋, 左军, 佘广夫, 等. 超细晶粒钢的强韧性研究[J]. 钢铁钒钛, 2004, 25(2): 1-5. doi: 10.3969/j.issn.1004-7638.2004.02.001
SONG L Q, ZUO J, SHE G F, et al. Research on strength and toughness of ultre-fine grain steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 1-5. doi: 10.3969/j.issn.1004-7638.2004.02.001
|
| [6] |
ZENG S W, LI F H, ZHANG L, et al. Microstructure and properties of Q420 30# large channel steel used for transmission towers[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 157-162. (曾尚武, 李凤辉, 张磊, 等. 输电铁塔用Q420级30#大规格角钢组织性能研究[J]. 钢铁钒钛, 2017, 38(5): 157-162. doi: 10.7513/j.issn.1004-7638.2017.05.029
ZENG S W, LI F H, ZHANG L, et al. Microstructure and properties of Q420 30# large channel steel used for transmission towers[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 157-162. doi: 10.7513/j.issn.1004-7638.2017.05.029
|
| [7] |
CHAI F, SU H, YANG C F, et al. V-N microalloyed high strength tower angle steel[J]. Journal of Iron and Steel Research, 2010, 22(11): 39-44. (柴锋, 苏航, 杨才福, 等. V-N微合金化高强度铁塔用角钢的研究[J]. 钢铁研究学报, 2010, 22(11): 39-44. doi: 10.13228/j.boyuan.issn1001-0963.2010.11.007
CHAI F, SU H, YANG C F, et al. V-N microalloyed high strength tower angle steel[J]. Journal of Iron and Steel Research, 2010, 22(11): 39-44. doi: 10.13228/j.boyuan.issn1001-0963.2010.11.007
|
| [8] |
FENG Y L, LIU Z Y, CHEN C S, et al. Application of VN alloy in production of large size angle steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 40-43. (冯运莉, 刘战英, 陈春生, 等. VN合金在大规格角钢生产中的应用研究[J]. 钢铁钒钛, 2004, 25(2): 40-43. doi: 10.3969/j.issn.1004-7638.2004.02.008
FENG Y L, LIU Z Y, CHEN C S, et al. Application of VN alloy in production of large size angle steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 40-43. doi: 10.3969/j.issn.1004-7638.2004.02.008
|
| [9] |
LIU M, WANG C, CHENG Z S, et al. Effect of hot rolling process on microstructure and properties of 390 MPa grade steel used for EMU bogie[J]. China Metallurgy, 2019, 29(11): 49-54. (刘敏, 王纯, 程知松, 等. 热轧工艺对390 MPa级高铁转向架用钢组织性能影响[J]. 中国冶金, 2019, 29(11): 49-54. doi: 10.13228/j.boyuan.issn1006-9356.20190178
LIU M, WANG C, CHENG Z S, et al. Effect of hot rolling process on microstructure and properties of 390 MPa grade steel used for EMU bogie[J]. China Metallurgy, 2019, 29(11): 49-54. doi: 10.13228/j.boyuan.issn1006-9356.20190178
|
| [10] |
LIU L P, GUAN X G. Research and application of hot rolling technology for production 700 MPa high strength automobile steel[J]. Steel Rolling, 2018, 35(2): 20-25. (刘丽萍, 关晓光. 700 MPa级高强汽车用钢热轧工艺研究与应用[J]. 轧钢, 2018, 35(2): 20-25. doi: 10.13228/j.boyuan.issn1003-9996.20170041
LIU L P, GUAN X G. Research and application of hot rolling technology for production 700 MPa high strength automobile steel[J]. Steel Rolling, 2018, 35(2): 20-25. doi: 10.13228/j.boyuan.issn1003-9996.20170041
|
| [11] |
REZAEI S R J, SIYASIYA C W, TANG Z H, et al. The influence of final coiling temperature on the microstructure and mechanical properties of high Ti-V HSLA steels[J]. MATEC Web of Conferences, 2022, 370: 03012. doi: 10.1051/matecconf/202237003012
|
| [12] |
YANG C S, LUO X, LI J H, et al. Effects of manganese content and finishing rolling temperature on the microstructure and mechanical properties of low cost middle titanium Q345B steel[J]. Iron and Steel, 2014, 49(11): 59-63. (杨财水, 罗许, 李俊洪, 等. 锰含量和终轧温度对低成本中钛Q345B钢组织性能的影响[J]. 钢铁, 2014, 49(11): 59-63. doi: 10.13228/j.boyuan.issn0449-749x.20140146
YANG C S, LUO X, LI J H, et al. Effects of manganese content and finishing rolling temperature on the microstructure and mechanical properties of low cost middle titanium Q345B steel[J]. Iron and Steel, 2014, 49(11): 59-63. doi: 10.13228/j.boyuan.issn0449-749x.20140146
|
| [13] |
WANG Y M, GUO Q Y, HU B, et al. Effect of Nb-V microalloying on the hot deformation behavior of medium Mn steels[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 32(2): 360-368.
|
| [14] |
FELISTERS Z, JUBERT P, GYANARANJAN M, et al. Strengthening mechanisms in vanadium-microalloyed medium-Mn steels[J]. Materials Today Communications, 2024, 41: 110512. doi: 10.1016/j.mtcomm.2024.110512
|
| [15] |
HU J J, REN Y, ZHANG L F. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. (胡俊杰, 任英, 张立峰. 铌微合金化高强钢中NbC析出相的生成机理[J]. 工程科学学报, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001
HU J J, REN Y, ZHANG L F. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001
|
| [16] |
WANG F, HU X W, XU Y, et al. Effect of vanadium and nitrogen content on mechanical properties of thick weathering steel[J]. Journal of Iron and Steel Research, 2023, 35(1): 98-104. (汪飞, 胡学文, 徐雁, 等. 钒氮含量对厚规格耐候钢力学性能的影响[J]. 钢铁研究学报, 2023, 35(1): 98-104.
WANG F, HU X W, XU Y, et al. Effect of vanadium and nitrogen content on mechanical properties of thick weathering steel[J]. Journal of Iron and Steel Research, 2023, 35(1): 98-104.
|
| [17] |
YANG K S. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 27(10): 34-36. (阳开生. 热处理及NbV-N微合金化对船板钢组织性能的影响[J]. 中国冶金, 2017, 27(10): 34-36. doi: 10.13228/j.boyuan.issn1006-9356.20170103
YANG K S. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 27(10): 34-36. doi: 10.13228/j.boyuan.issn1006-9356.20170103
|
| [18] |
NARITA K. Physical chemistry of the groups IVa(Ti, Zr), Va(V, Nb, ta)and the rare earth elements in steel[J]. Transactions of the Iron and Steel Institute of Japan, 1975, 15(3): 145. doi: 10.2355/isijinternational1966.15.145
|
| [19] |
NORDBERG H, ARONSSON B. Solubility of niobium carbide in austenite[J]. JISI, 1968, 12: 1263-1266.
|
| [20] |
SMITH R P. The solubility of niobium carbide in Gamma iron[J]. Trans AIME, 1966, 236: 220-221.
|
| [21] |
YONG Q L. Second phases in structural steels[M]. Beijing: Published by Metallurgical Industry Press, 2006. (雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社出版, 2006.
YONG Q L. Second phases in structural steels[M]. Beijing: Published by Metallurgical Industry Press, 2006.
|
| [22] |
LI Z Q, ZHANG S Y, HE Y, et al. Influences of second phase particle precipitation, coarsening, growth or dissolution on the pinning effects during grain coarsening processes[J]. Metals, 2023, 13(2): 281. doi: 10.3390/met13020281
|
| [23] |
AKHTAR M N, KHAN M, KHAN S A, et al. Determination of non-recrystallization temperature for niobium microalloyed steel[J]. Materials, 2021, 14(10): 2639. doi: 10.3390/ma14102639
|
| [24] |
PENG J, HE Y M, FU T L. Effect of austenite grain size on intracrystalline ferrite nucleation in vanadium microalloyed steel[J]. Iron Steel Vanadium Titanium, 2025, 46(2): 175-181. (彭静, 何月漫, 付天亮. 钒微合金钢奥氏体晶粒尺寸对晶内铁素体形核影响[J]. 钢铁钒钛, 2025, 46(2): 175-181. doi: 10.7513/j.issn.1004-7638.2025.02.024
PENG J, HE Y M, FU T L. Effect of austenite grain size on intracrystalline ferrite nucleation in vanadium microalloyed steel[J]. Iron Steel Vanadium Titanium, 2025, 46(2): 175-181. doi: 10.7513/j.issn.1004-7638.2025.02.024
|
| [25] |
CUI G B, JÜ X H, ZHANG Y C, et al. Effect of Nb content on austenite recrystallization in low carbon steel[J]. China Metallurgy, 2019, 29(8): 52-57. (崔桂彬, 鞠新华, 张玉成, 等. 低碳钢中铌含量对奥氏体再结晶的影响[J]. 中国冶金, 2019, 29(8): 52-57. doi: 10.13228/j.boyuan.issn1006-9356.20180368
CUI G B, JÜ X H, ZHANG Y C, et al. Effect of Nb content on austenite recrystallization in low carbon steel[J]. China Metallurgy, 2019, 29(8): 52-57. doi: 10.13228/j.boyuan.issn1006-9356.20180368
|
| [26] |
ZHANG G T, TANG D, ZHENG Z W, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 139-144. (张功庭, 唐荻, 郑之旺, 等. 热处理工艺对1000 MPa级含钒高强钢组织和性能的影响[J]. 钢铁钒钛, 2020, 41(4): 139-144. doi: 10.7513/j.issn.1004-7638.2020.04.025
ZHANG G T, TANG D, ZHENG Z W, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 139-144. doi: 10.7513/j.issn.1004-7638.2020.04.025
|
| [27] |
SHI L, TIAN P Y, WEN G Q, et al. Effect of quenching processes on microstructure and mechanical properties of a ferrite-martensite dual-phase steel[J]. Heat Treatment of Metals, 2025, 50(3): 138-142. (石磊, 田鹏勇, 温国强, 等. 淬火工艺对铁素体/马氏体双相钢组织与性能的影响[J]. 金属热处理, 2025, 50(3): 138-142. doi: 10.13251/j.issn.0254-6051.2025.03.022
SHI L, TIAN P Y, WEN G Q, et al. Effect of quenching processes on microstructure and mechanical properties of a ferrite-martensite dual-phase steel[J]. Heat Treatment of Metals, 2025, 50(3): 138-142. doi: 10.13251/j.issn.0254-6051.2025.03.022
|
| [28] |
PIAO Y, BALINT D S. A discrete dislocation plasticity assessment of the effective temperature in thermodynamic dislocation theory[J]. Acta Materialia, 2025, 287: 120808. doi: 10.1016/j.actamat.2025.120808
|
| [29] |
GB/T 33362-2016, Metallic materials—Conversion of hardness values[S]. (GB/T 33362-2016, 金属材料 硬度值的换算[S].
GB/T 33362-2016, Metallic materials—Conversion of hardness values[S].
|
| [30] |
SUN Y, AN Z G, ZHANG G T, et al. Study on continuous cooling transformation of ferrite-pearlite non-quenched and tempered steel[J]. Steel Rolling, 2019, 36(3): 37-41. (孙岩, 安治国, 张国涛, 等. 铁素体-珠光体型非调质钢连续冷却转变的研究[J]. 轧钢, 2019, 36(3): 37-41. doi: 10.13228/j.boyuan.issn1003-9996.20180054
SUN Y, AN Z G, ZHANG G T, et al. Study on continuous cooling transformation of ferrite-pearlite non-quenched and tempered steel[J]. Steel Rolling, 2019, 36(3): 37-41. doi: 10.13228/j.boyuan.issn1003-9996.20180054
|