| Citation: | XIONG Xuegang, LUO Hanyu, ZENG Han, CAO Jianchun, ZHOU Xianchao, WANG Chuangwei. Effect of Zr on the microstructure and properties of direct-quenched Ti microalloyed high-strength low carbon martensitic steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 147-156. doi: 10.7513/j.issn.1004-7638.2025.06.018 |
| [1] |
XIE H, DU L X, HU J, et al. Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness[J]. Mater. Sci. Eng. A, 2014, 612: 123-130. doi: 10.1016/j.msea.2014.06.033
|
| [2] |
ROCCISANO A, NAFISI S, STALHEIM D, et al. Effect of TMCP rolling schedules on the microstructure and performance of X70 steel[J]. Mater. Charact., 2021, 178: 111207. doi: 10.1016/j.matchar.2021.111207
|
| [3] |
LI H Y, LAI Y Q. Effect of direct quenching process on microstructure and mechanical properties of Q690 steel[J]. Hot Working Technology, 2017, 46(6): 195-197. (李红英, 赖永秋. 直接淬火工艺对Q690钢组织和性能的影响[J]. 热加工工艺, 2017, 46(6): 195-197.
LI H Y, LAI Y Q. Effect of direct quenching process on microstructure and mechanical properties of Q690 steel[J]. Hot Working Technology, 2017, 46(6): 195-197.
|
| [4] |
MA H. Effect of on-line direct quenching process on microstructure and properties of low carbon martensitc steel[J]. Steel Rolling, 2019, 36(6): 22-28. (麻衡. 在线直接淬火工艺对低碳马氏体钢组织性能的影响[J]. 轧钢, 2019, 36(6): 22-28.
MA H. Effect of on-line direct quenching process on microstructure and properties of low carbon martensitc steel[J]. Steel Rolling, 2019, 36(6): 22-28.
|
| [5] |
INOUE J, SADEGHI A, KOSEKI T. Slip band formation at free surface of lath martensite in low carbon steel[J]. Acta Mater., 2019, 165: 129-141. doi: 10.1016/j.actamat.2018.11.026
|
| [6] |
WANG J, EL-FALLAH G M A M, WANG Z, et al. Strength improvement over 2 GPa and austenite grain ultra-refinement in a low carbon martensite steel achieved by ultra-rapid heating and quenching[J]. Mater. Sci. Eng. A, 2023, 884: 145538. doi: 10.1016/j.msea.2023.145538
|
| [7] |
HANNULA J, PORTER D, KAIJALAINEN A, et al. Optimization of niobium content in direct quenched high-strength steels[J]. Metals, 2020, 10: 807. doi: 10.3390/met10060807
|
| [8] |
HANNULA J, PORTER D, KAIJALAINEN A, et al. Evaluation of mechanical properties and microstructures of molybdenum and niobium microalloyed thermomechanically rolled high-strength press hardening steel[J]. JOM., 2019, 71: 2405-2412. doi: 10.1007/s11837-019-03478-9
|
| [9] |
XU L, SHI J, CAO W Q, et al. Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement[J]. J. Mater. Sci., 2011, 46: 6384-6389. doi: 10.1007/s10853-011-5586-5
|
| [10] |
LI H, WEN G, CAI Z, et al. The effect of vanadium content on hierarchical martensite structure and yield strength of petroleum casing steels[J]. J. Mater. Res. Technol., 2022, 18: 4522-4532. doi: 10.1016/j.jmrt.2022.04.129
|
| [11] |
LIU H H. Influence of titanium and zirconium complex deoxidation on the inclusions and microstructure of steel[J]. Steelmaking, 2015, 31(3): 59-62. (刘航航. 钛、锆脱氧对钢中夹杂物及组织的影响[J]. 炼钢, 2015, 31(3): 59-62.
LIU H H. Influence of titanium and zirconium complex deoxidation on the inclusions and microstructure of steel[J]. Steelmaking, 2015, 31(3): 59-62.
|
| [12] |
QIU G X, ZHANG H Z, LU F, et al. Effect of Y and Zr on MnS and microstructure and mechanical properties of non- quenched and tempered steel[J]. China Metallurgy, 2024, 34(8): 11-19. (邱国兴, 张红钊, 路峰, 等. 钇、锆对非调质钢中MnS及组织力学性能的影响[J]. 中国冶金, 2024, 34(8): 11-19.
QIU G X, ZHANG H Z, LU F, et al. Effect of Y and Zr on MnS and microstructure and mechanical properties of non- quenched and tempered steel[J]. China Metallurgy, 2024, 34(8): 11-19.
|
| [13] |
JIN X. Effect of zirconium deoxidation on inclusions and corrosion resistance for high strength ship plate EH36[J]. Continuous Casting, 2022(2): 83-88. (靳星. 锆脱氧对船板EH36夹杂物和耐蚀性能的影响[J]. 连铸, 2022(2): 83-88.
JIN X. Effect of zirconium deoxidation on inclusions and corrosion resistance for high strength ship plate EH36[J]. Continuous Casting, 2022(2): 83-88.
|
| [14] |
LIANG G L, YANG S W, WU H B, et al. Effects of zirconium on impact toughness of CGHAZ and inclusion morphology of hull structure steel plate during the large heat input welding[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl.2): 317-320. (梁国俐, 杨善武, 武会宾, 等. 锆加入量对船板钢焊接CGHAZ低温韧性及夹杂物形态影响[J]. 稀有金属材料与工程, 2013, 42(Suppl.2): 317-320.
LIANG G L, YANG S W, WU H B, et al. Effects of zirconium on impact toughness of CGHAZ and inclusion morphology of hull structure steel plate during the large heat input welding[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl.2): 317-320.
|
| [15] |
SHEN Y, WAN X L, LIU Y, et al. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. Transactions of the China Welding Institution, 2019, 40(8): 55-62. (沈毓, 万响亮, 刘昱, 等. Zr对高强度钢热影响区第二相粒子及韧性影响[J]. 焊接学报, 2019, 40(8): 55-62.
SHEN Y, WAN X L, LIU Y, et al. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. Transactions of the China Welding Institution, 2019, 40(8): 55-62.
|
| [16] |
CHEN M J, TANG J G, ZHENG Z B, et al. Effect of Zr microalloying on microstructure and mechanical properties of Fe-Cr wear-resistant alloy steel[J]. Heat Treatment of Metals, 2019, 44(11): 45-51. (陈梦杰, 唐建国, 郑志斌, 等. Zr微合金化对Fe-Cr耐磨合金钢组织及力学性能的影响[J]. 金属热处理, 2019, 44(11): 45-51.
CHEN M J, TANG J G, ZHENG Z B, et al. Effect of Zr microalloying on microstructure and mechanical properties of Fe-Cr wear-resistant alloy steel[J]. Heat Treatment of Metals, 2019, 44(11): 45-51.
|
| [17] |
YIN C K. Effect of austenitizing process on microstructure evolution and mechanical properties of micro-zirconium alloy steel[D]. Shenyang: Shenyang University of Technology, 2024. (尹超坤. 奥氏体化工艺对微锆合金钢组织演变和力学性能的影响[D]. 沈阳: 沈阳工业大学, 2024.
YIN C K. Effect of austenitizing process on microstructure evolution and mechanical properties of micro-zirconium alloy steel[D]. Shenyang: Shenyang University of Technology, 2024.
|
| [18] |
YANG Y K, ZHAN D P, JIANG Z H, et al. Effect of Zr treatment on nitride in low carbon Ti- microalloyed steels[J]. Journal of Northeastern University (Natural Science), 2021, 42(12): 1709-1716. (杨永坤, 战东平, 姜周华, 等. Zr处理对含Ti低碳微合金钢中氮化物的影响[J]. 东北大学学报(自然科学版), 2021, 42(12): 1709-1716.
YANG Y K, ZHAN D P, JIANG Z H, et al. Effect of Zr treatment on nitride in low carbon Ti- microalloyed steels[J]. Journal of Northeastern University (Natural Science), 2021, 42(12): 1709-1716.
|
| [19] |
ZENG M. Effect of zirconium content on austenitic structure during hot deformation of titanium microalloyed low carbon steel[D]. Kunming: Kunming University of Science and Technology, 2020. (曾敏. 锆含量对钛微合金化低碳钢热变形过程中奥氏体组织的影响[D]. 昆明: 昆明理工大学, 2020.
ZENG M. Effect of zirconium content on austenitic structure during hot deformation of titanium microalloyed low carbon steel[D]. Kunming: Kunming University of Science and Technology, 2020.
|
| [20] |
ZHENG Z, LONG J, WANG S, et al. Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution[J]. Corros. Sci. 184, 109382 (2021).
|
| [21] |
BORATTO F, BARBOSA R, YUE S, et al. In proceedings of the international conference on physical metallurgy of thermomechanical processing of steels and other metals[C]. THERMEC-88, Tokyo, Japan, 6–10 June 1988. p383.
|
| [22] |
LIU P C. Study on the thermal deformation behavior of Ti-Zr microalloyed low-carbon steel[D]. Kunming: Kunming University of Science and Technology, 2018. (刘鹏程. Ti-Zr 微合金化低碳钢热变形行为研究[D]. 昆明: 昆明理工大学, 2018.
LIU P C. Study on the thermal deformation behavior of Ti-Zr microalloyed low-carbon steel[D]. Kunming: Kunming University of Science and Technology, 2018.
|
| [23] |
CHEN W, GAO P, WANG S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel[J]. Mater. Sci. Eng. A, 2020, 797: 140115. doi: 10.1016/j.msea.2020.140115
|
| [24] |
CELADA-CASERO C, SIETSMA J, SANTOFIMIA M J. The role of the austenite grain size in the martensitic transformation in low carbon steels[J]. Mater. Design, 2019, 167: 107625. doi: 10.1016/j.matdes.2019.107625
|
| [25] |
YONG Q L. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006. (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006.
YONG Q L. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006.
|
| [26] |
SHIBATA A, NAGOSHI T, SONE M, et al. Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test[J]. Mater. Sci. Eng. A, 2010, 527: 7538-7544. doi: 10.1016/j.msea.2010.08.026
|
| [27] |
MORITO S, YOSHIDA H, MAKI T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Mate. Sci. Eng. A, 2006, 438-440: 237-240.
|