Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
SU Qihao, QI Haiquan, LI Xinru, LI Lamei, YANG Zikang, XIE Yingying, YAO Xiaofeng, ZHOU Zhongcheng. The influence of decarburization on the mechanical properties of 2100 MPa grade V microalloyed bridge cable steel wire[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 157-163. doi: 10.7513/j.issn.1004-7638.2025.06.019
Citation: SU Qihao, QI Haiquan, LI Xinru, LI Lamei, YANG Zikang, XIE Yingying, YAO Xiaofeng, ZHOU Zhongcheng. The influence of decarburization on the mechanical properties of 2100 MPa grade V microalloyed bridge cable steel wire[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 157-163. doi: 10.7513/j.issn.1004-7638.2025.06.019

The influence of decarburization on the mechanical properties of 2100 MPa grade V microalloyed bridge cable steel wire

doi: 10.7513/j.issn.1004-7638.2025.06.019
More Information
  • Received Date: 2025-08-15
  • Accepted Date: 2025-12-05
  • Rev Recd Date: 2025-12-04
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • To quantify the influence of decarburization layers on the mechanical properties of ultra-high strength cable steel wires, in this paper the radial hardness distribution, decarburization layer depth and mechanical properties of 2100 MPa grade V microalloyed zinc-aluminum cable steel wires after layer-by-layer stripping of decarburization layers had been systematically studied. The results show that the radial hardness of the steel wire substrate increases regularly from the surface to the core, with the hardness (HV) being 601 at the outermost layer and 678 at the core. The hardness data confirm that the actual decarburization layer depth of the steel wire can reach (150±10) μm. The thickness of achieved zinc-aluminum coating on the steel wire is approximately 30 μm, which reduces the steel wire's strength by 11.17 MPa, indicating a minor impact on the steel wire's strength. After the layer-by-layer removal of the decarburized layer, the strength of the steel wire substrate increases from 2134.04 MPa to 2225.97 MPa. The decarburized layer reduces the steel wire's strength by 91.93 MPa, and the strength tends to stabilize after removing a 140 μm layer. It can be seen from the data that the decarburization layer significantly reduces the overall strength of the cable steel wire. Therefore, well controlling the decarburization of the wire rods is an important factor in the development of ultra-high strength cable steel wire.
  • loading
  • [1]
    HU L, WANG L, MA H. Study on hot-rolled steel wire rod for ultra-high strength PC steel wire and strand[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 142-147. (胡磊, 王雷, 麻晗. 超高强度预应力钢丝及钢绞线用盘条的开发研究[J]. 钢铁钒钛, 2016, 37(1): 142-147. doi: 10.7513/j.issn.1004-7638.2016.01.028

    HU L, WANG L, MA H. Study on hot-rolled steel wire rod for ultra-high strength PC steel wire and strand[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 142-147. doi: 10.7513/j.issn.1004-7638.2016.01.028
    [2]
    BORCHERS C, KIRCHHHEIM R. Cold-drawn pearlitic steel wires[J]. Progress in Materials Science, 2016, 82: 405-444. doi: 10.1016/j.pmatsci.2016.06.001
    [3]
    FENG L L, WU K M, LU X Y, et al. Research status and development tendency of ultra-high strength steel wire for bridge cables[J]. Materials China, 2020, 39(5): 395-403. (冯路路, 吴开明, 鲁修宇, 等. 桥梁缆索用超高强度钢丝的研究现状及发展趋势[J]. 中国材料进展, 2020, 39(5): 395-403. doi: 10.7502/j.issn.1674-3962.201904017

    FENG L L, WU K M, LU X Y, et al. Research status and development tendency of ultra-high strength steel wire for bridge cables[J]. Materials China, 2020, 39(5): 395-403. doi: 10.7502/j.issn.1674-3962.201904017
    [4]
    WANG H B, FU C, DI Z W, et al. Research status of microstructure and properties control of ultra-high stength prestressed steel strand above 2000 MPa grade[J]. China Metallurgy, 2024, 34(4): 24-38. (王海宾, 傅超, 狄增文, 等. 2000 MPa级以上超高强预应力钢绞线组织性能调控研究现状[J]. 中国冶金, 2024, 34(4): 24-38. doi: 10.13228/j.boyuan.issn1006-9356.20230703

    WANG H B, FU C, DI Z W, et al. Research status of microstructure and properties control of ultra-high stength prestressed steel strand above 2000 MPa grade[J]. China Metallurgy, 2024, 34(4): 24-38. doi: 10.13228/j.boyuan.issn1006-9356.20230703
    [5]
    SHEN J L, QIN Z G, XIA Y H, et al. Application of VN alloy in high-carbon wire and rod of WSWRH82B[J]. Iron Steel Vanadium Titanium, 2009, 30(4): 21-26. (沈金龙, 覃之光, 夏艳花, 等. 钒氮合金在高碳钢WSWRH82B中的应用[J]. 钢铁钒钛, 2009, 30(4): 21-26.

    SHEN J L, QIN Z G, XIA Y H, et al. Application of VN alloy in high-carbon wire and rod of WSWRH82B[J]. Iron Steel Vanadium Titanium, 2009, 30(4): 21-26.
    [6]
    MAEJIMA T, YONEMURA M, KAORI K, et al. Lattice strain and strength evaluation on V microalloyed pearlite steel[J]. ISIJ International, 2020, 60(8): 1810-1818. doi: 10.2355/isijinternational.ISIJINT-2019-708
    [7]
    DENG T W, CUI F, TANG Z Y, et al. Effect of vanadium on phase transformation, cold drawing, and torsion of high-carbon steel[J]. Journal of Materials Engineering and Performance, 2025, 34: 17235-17244. doi: 10.1007/s11665-024-10419-4
    [8]
    MAKII K, YAGUCHI H, KAISO M, et al. Influence of Si on nano sub-structure of cementite lamellae in pearlitic steel wires[J]. Scripta Materialia, 1997, 37(11): 1753-1759. doi: 10.1016/S1359-6462(97)00326-6
    [9]
    JOUNG S, NAM W. Effects of alloying elements, Si and Cr, on aging and delamination behaviors in cold-drawn and subsequently annealed hyper-eutectoid steel wires[J]. Metals and Materials International, 2018, 25: 34-44.
    [10]
    ZHANG C L, LIU Y Z, ZHOU L Y, et al. Forming condition and control strategy of ferrite decarburization in 60Si2MnA spring steel wires for automotive suspensions[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19: 116-121.
    [11]
    SHI Y, ZHAO M T, LU J H, et al. Analysis and improvement of full-decarburized layer of SCM435 hot rolled wire[J/OL]. Hot Working Technology, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663. (史杨, 赵满堂, 陆继欢, 等. SCM435热轧盘条全脱碳层原因分析及改进[J/OL]. 热加工工艺, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663.

    SHI Y, ZHAO M T, LU J H, et al. Analysis and improvement of full-decarburized layer of SCM435 hot rolled wire[J/OL]. Hot Working Technology, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663.
    [12]
    LI M N, DU Z Z, WANG Q J, et al. Application status of micro-alloying and controlled cooling in high carbon steel wire rod[J]. Hot Working Technology, 2016, 45(1): 6-10. (李敏娜, 杜忠泽, 王庆娟, 等. 微合金化及控制冷却在高碳钢盘条中的应用现状[J]. 热加工工艺, 2016, 45(1): 6-10. doi: 10.14158/j.cnki.1001-3814.2016.01.002

    LI M N, DU Z Z, WANG Q J, et al. Application status of micro-alloying and controlled cooling in high carbon steel wire rod[J]. Hot Working Technology, 2016, 45(1): 6-10. doi: 10.14158/j.cnki.1001-3814.2016.01.002
    [13]
    JIA L, HU C Y, ZHU X X, et al. Effect of cold drawing on microstructure and mechanical properties of Nb microalloyed steel wire for bridge cable[J]. Journal of Iron and Steel Research, 2024, 36(7): 947-956. (贾力, 胡丞杨, 朱晓雄, 等. 冷拉拔对Nb微合金化桥梁缆索用钢丝显微组织和力学性能的影响[J]. 钢铁研究学报, 2024, 36(7): 947-956.

    JIA L, HU C Y, ZHU X X, et al. Effect of cold drawing on microstructure and mechanical properties of Nb microalloyed steel wire for bridge cable[J]. Journal of Iron and Steel Research, 2024, 36(7): 947-956.
    [14]
    YANG X, BAO S Q, KANG X L, et al. Microstructure evolution and strengthening mechanism of 2100 MPa grade cold-drawn steel wires for bridge cables[J]. Special Steel, 2025, 46(1): 92-98. (杨旭, 鲍思前, 康筱龙, 等. 2100 MPa级桥梁缆索用冷拔钢丝微观组织演变及强化机制[J]. 特殊钢, 2025, 46(1): 92-98. doi: 10.20057/j.1003-8620.2024-00168

    YANG X, BAO S Q, KANG X L, et al. Microstructure evolution and strengthening mechanism of 2100 MPa grade cold-drawn steel wires for bridge cables[J]. Special Steel, 2025, 46(1): 92-98. doi: 10.20057/j.1003-8620.2024-00168
    [15]
    WANG L F, ZHOU L C, CHEN H Q, et al. Manufacturing technology, microstructural and mechanical properties of Ø5.35 mm-2100 MPa grade hot galvalume steel wire for bridge cable[J]. Iron & Steel, 2019, 54(2): 90-96. (王林烽, 周立初, 陈华青, 等. Ø5.35 mm-2100 MPa桥梁用锌铝钢丝的工艺与组织性能[J]. 钢铁, 2019, 54(2): 90-96. doi: 10.13228/j.boyuan.issn0449-749x.20180288

    WANG L F, ZHOU L C, CHEN H Q, et al. Manufacturing technology, microstructural and mechanical properties of Ø5.35 mm-2100 MPa grade hot galvalume steel wire for bridge cable[J]. Iron & Steel, 2019, 54(2): 90-96. doi: 10.13228/j.boyuan.issn0449-749x.20180288
    [16]
    QU X, BAO S Q, ZHAO G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing[J]. Journal of Materials Science and Engineering, 2021, 39(6): 937-942. (瞿熙, 鲍思前, 赵刚, 等. 高碳钢丝拉拔过程中的组织性能演变[J]. 材料科学与工程学报, 2021, 39(6): 937-942. doi: 10.14136/j.cnki.issn1673-2812.2021.06.010

    QU X, BAO S Q, ZHAO G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing[J]. Journal of Materials Science and Engineering, 2021, 39(6): 937-942. doi: 10.14136/j.cnki.issn1673-2812.2021.06.010
    [17]
    WANG M, WANG L P, WANG L F, et al. The effect of sorbite colony morphology on the mechanical properties of cord steel 82A[J]. Mining and Metallurgy, 2013, 22(S1): 74-78. (王猛, 王丽萍, 王立峰, 等. 索氏体团形态对帘线钢82A力学性能的影响[J]. 矿冶, 2013, 22(S1): 74-78. doi: 10.3969/j.issn.1005-7854.2013.z1.018

    WANG M, WANG L P, WANG L F, et al. The effect of sorbite colony morphology on the mechanical properties of cord steel 82A[J]. Mining and Metallurgy, 2013, 22(S1): 74-78. doi: 10.3969/j.issn.1005-7854.2013.z1.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (30) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return