Volume 46 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
YAO Xiaofeng, QI Haiquan, XIE Yingying, LI Xinxin, LI Xinru, LI Lamei. The influence of sub-temperature heating on the quenching microstructure and mechanical properties of 22MnB5 steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 164-171. doi: 10.7513/j.issn.1004-7638.2025.06.020
Citation: YAO Xiaofeng, QI Haiquan, XIE Yingying, LI Xinxin, LI Xinru, LI Lamei. The influence of sub-temperature heating on the quenching microstructure and mechanical properties of 22MnB5 steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 164-171. doi: 10.7513/j.issn.1004-7638.2025.06.020

The influence of sub-temperature heating on the quenching microstructure and mechanical properties of 22MnB5 steel

doi: 10.7513/j.issn.1004-7638.2025.06.020
More Information
  • Received Date: 2025-05-08
  • Accepted Date: 2025-06-19
  • Rev Recd Date: 2025-06-13
  • Available Online: 2025-12-31
  • Publish Date: 2025-12-31
  • The effect of different temperatures on the quenching microstructure and mechanical properties of 22MnB5 steel in the range of 680-930 ℃ were systematically studied by designing heat treatment processes with different heating temperatures and holding times. The results show that prolonged heating in the low-temperature zone (680-700 ℃) leads to material softening, and prolonged heating in the high-temperature zone (850-930 ℃) has limited improvement in mechanical properties. However, prolonged heating in the sub-temperature temperatures zone (720-820 ℃) results in a significant improvement in the mechanical properties. Particularly, the tensile and yield strengths reached 1 589 MPa and 1078 MPa after quenching at 820 ℃ for 20 min, which were 151.02% and 132.82% higher than the initial state, respectively. The study shows that by optimizing the sub-temperature heating process, the tensile strength of 22MnB5 steel can be obtained at a level of 1500 MPa at a lower temperature than the existing processes, which provides a new approach to solving the problem in the existing hot forming technologies.
  • loading
  • [1]
    LEWIS G M, BUCHANAN C A, JHAVERI K D, et al. Green principles for vehicle lightweighting[J]. Environmental Science & Technology, 2019, 53(8): 4063-4077.
    [2]
    NINA B, DRAGAN A, NENAD G, et al. Lightweight materials for automobiles[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1271(1): 012010. doi: 10.1088/1757-899X/1271/1/012010
    [3]
    HAN Y, LIU H S, XIAO B L. The current situation and development trend of the development and application of automotive steel in China[J]. Steel Rolling, 2024, 41(5): 108-120. (韩 赟, 刘华赛, 肖宝亮. 我国汽车用钢开发应用现状及发展趋势[J]. 轧钢, 2024, 41(5): 108-120.

    HAN Y, LIU H S, XIAO B L. The current situation and development trend of the development and application of automotive steel in China[J]. Steel Rolling, 2024, 41(5): 108-120.
    [4]
    TANG Y S, SI Y, XU Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweighting[J]. Heat Treatment of Metals, 2023, 48(10): 247-254. (唐远寿, 司 宇, 徐正萌, 等. 超高强度钢在汽车轻量化中的应用及研究进展[J]. 金属热处理, 2023, 48(10): 247-254.

    TANG Y S, SI Y, XU Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweighting[J]. Heat Treatment of Metals, 2023, 48(10): 247-254.
    [5]
    NIE P L. Research on temperature field and microstructure and properties of 22MnB5 variable thickness high strength steel plate during hot stamping forming[D]. Hebei: Yanshan University, 2023. (聂鹏龙. 22MnB5变厚度高强钢板热冲压成形温度场及组织性能研究[D]. 河北: 燕山大学, 2023.

    NIE P L. Research on temperature field and microstructure and properties of 22MnB5 variable thickness high strength steel plate during hot stamping forming[D]. Hebei: Yanshan University, 2023.
    [6]
    TONG C, RONG Q, YARDLEY V A, et al. New developments and future trends in low-temperature hot stamping technologies: A Review[J]. Metals, 2020, 10(12): 1652. doi: 10.3390/met10121652
    [7]
    HE W, YANG B, ZHANG X, et al. Investigation into the hot-forming limit for 22MnB5 hot-forming steel under a stamping process[J]. Metals, 2024, 14(5): 561. doi: 10.3390/met14050561
    [8]
    WANG H L, YUE C X, ZHANG Z J, et al. Development and application of 22MnB5 ultra-high strength hot stamping steel[J]. Journal of Plasticity Engineering, 2024, 31(1): 195-203. (王欢龙, 岳重祥, 张志建, 等. 22MnB5超高强度热冲压成形钢的开发及应用[J]. 塑性工程学报, 2024, 31(1): 195-203.

    WANG H L, YUE C X, ZHANG Z J, et al. Development and application of 22MnB5 ultra-high strength hot stamping steel[J]. Journal of Plasticity Engineering, 2024, 31(1): 195-203.
    [9]
    ZHU X, WANG Z T, LIN T, et al. Research on microstructure and mechanical properties of hot stamping 22MnB5 Boron steel plate[J]. Journal of ShenYang Ligong University, 2015, 34(6): 15-19. (祝 哮, 王忠堂, 林 涛, 等. 22MnB5硼钢板热冲压成形组织及力学性能研究[J]. 沈阳理工大学学报, 2015, 34(6): 15-19.

    ZHU X, WANG Z T, LIN T, et al. Research on microstructure and mechanical properties of hot stamping 22MnB5 Boron steel plate[J]. Journal of ShenYang Ligong University, 2015, 34(6): 15-19.
    [10]
    MORI K, BARIANI P F, BEHRENS B A, et al. Hot stamping of ultra-high strength steel parts[J]. CIRP Annals, 2017, 66(2): 755-777. doi: 10.1016/j.cirp.2017.05.007
    [11]
    MERKLEIN M, WIEAND M, LECHNER M, et al. Hot stamping of boron steel sheets with tailored properties: A review[J]. Journal of Materials Processing Technology, 2016, 228: 11-24. doi: 10.1016/j.jmatprotec.2015.09.023
    [12]
    FEI Y J, XU Z H, LI H G, et al. The effect of quenching heating temperature on the microstructure and properties of 22MnB5 ultra high strength steel[J]. Hot Working Technology, 2019, 48(4): 210-214, 217. (费炜杰, 许正华, 李华冠, 等. 淬火加热温度对22MnB5超高强度钢组织及性能的影响[J]. 热加工工艺, 2019, 48(4): 210-214, 217.

    FEI Y J, XU Z H, LI H G, et al. The effect of quenching heating temperature on the microstructure and properties of 22MnB5 ultra high strength steel[J]. Hot Working Technology, 2019, 48(4): 210-214, 217.
    [13]
    SHI H J, CAO P, TANG P P, et al. The influence of temperature parameters on the properties of 22MnB5 ultra-high strength steel during hot forming process[J]. Die and Mould Technology, 2022, 40(3): 20-24. (石慧君, 曹 鹏, 汤鹏鹏, 等. 热成型过程中温度参数对22MnB5超高强钢性能的影响[J]. 模具技术, 2022, 40(3): 20-24.

    SHI H J, CAO P, TANG P P, et al. The influence of temperature parameters on the properties of 22MnB5 ultra-high strength steel during hot forming process[J]. Die and Mould Technology, 2022, 40(3): 20-24.
    [14]
    PAN H, WEI C, YU W, et al. Achieving excellent strength–ductility combination by cyclic quenching treatment in 22MnB5 steel[J]. Journal of Materials Engineering and Performance, 2022, 31(8): 6659-6663. doi: 10.1007/s11665-022-06737-0
    [15]
    LI B, CHEN Y, ZHAO X, et al. Effect of a process on oxidative decarbonization behavior and mechanical properties of 22MnB5 steel[J]. Journal of Materials Engineering and Performance, 2024, 33(1): 213-226. doi: 10.1007/s11665-023-07985-4
    [16]
    DEY P P, SAHU S, BANERJEE P S, et al. A review on metallurgical features of hot-dip aluminized steel[J]. Engineering Research Express, 2023, 5(1): 012002. doi: 10.1088/2631-8695/acb902
    [17]
    YIN H, PENG Y C, LI X Z. Research progress on coating cracks in galvanized ultra-high strength steel plates[J]. Material Protection, 2024, 57(9): 107-116. (尹 浩, 彭玉春, 黎小洲. 镀锌超高强度钢板中镀层裂纹的研究进展[J]. 材料保护, 2024, 57(9): 107-116.

    YIN H, PENG Y C, LI X Z. Research progress on coating cracks in galvanized ultra-high strength steel plates[J]. Material Protection, 2024, 57(9): 107-116.
    [18]
    LEE C W, FAN D W, SOHN I R, et al. Liquid-metal-induced embrittlement of Zn-coated hot stamping steel[J]. Metallurgical and Materials Transactions A, 2012, 43(13): 5122-5127. doi: 10.1007/s11661-012-1316-0
    [19]
    QIU X P, ZHANG J, JIANG S M, et al. The effect of stamping temperature on cracks in the coating of galvanized 22MnB5 steel plate[J]. Corrosion & Protection, 2018, 39(4): 302-322. (邱肖盼, 张 杰, 江社明, 等. 冲压温度对镀锌22MnB5钢板镀层中裂纹的影响[J]. 腐蚀与防护, 2018, 39(4): 302-322.

    QIU X P, ZHANG J, JIANG S M, et al. The effect of stamping temperature on cracks in the coating of galvanized 22MnB5 steel plate[J]. Corrosion & Protection, 2018, 39(4): 302-322.
    [20]
    LIU H D, WANG D Z, WEI H D, et al. Grain boundary segregation and precipitation behavior of boron microalloyed stainless steels[J]. Heat Treatment of Metals, 2013, 38(3): 47-52. (刘海定, 王东哲, 魏捍东, 等. 不锈钢中硼微合金化的晶界偏聚析出行为[J]. 金属热处理, 2013, 38(3): 47-52.

    LIU H D, WANG D Z, WEI H D, et al. Grain boundary segregation and precipitation behavior of boron microalloyed stainless steels[J]. Heat Treatment of Metals, 2013, 38(3): 47-52.
    [21]
    QIU S T, XIAO L J, LIU J Q, et al. Softening mechanism of boron-bearing low-carbon hot strips produced by TSCR route[J]. Acta Metallurgica Sinica, 2006, 42(11): 1202-1206. (仇圣桃, 肖丽俊, 刘家琪, 等. 薄板坯连铸连轧生产含硼低碳热轧带钢的软化机理[J]. 金属学报, 2006, 42(11): 1202-1206.

    QIU S T, XIAO L J, LIU J Q, et al. Softening mechanism of boron-bearing low-carbon hot strips produced by TSCR route[J]. Acta Metallurgica Sinica, 2006, 42(11): 1202-1206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (27) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return