| Citation: | YANG Yan, WANG Hemu, GAO Qing, PENG Fei, ZHANG Kaiming, YUAN Wuhua. Regulation effect of post-rolling quenching and tempering treatment on element segregation and banded microstructure in hot-rolled Q345R steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 179-185. doi: 10.7513/j.issn.1004-7638.2025.06.022 |
| [1] |
YANG Y K, ZHU J Y, LI X M, et al. A review of research on banded structure control in low carbon alloy steel[J]. Iron & Steel, 2023, 58(4): 1-10. (杨永坤, 朱佳雨, 李小明, 等. 低碳合金钢带状组织控制研究现状[J]. 钢铁, 2023, 58(4): 1-10.
YANG Y K, ZHU J Y, LI X M, et al. A review of research on banded structure control in low carbon alloy steel[J]. Iron & Steel, 2023, 58(4): 1-10.
|
| [2] |
JI Y, MIN Y F, LI P S, et al. Research status of banding phenomena in steels[J]. China Metallurgy, 2016, 26(4): 1-9. (纪元, 闵云峰, 李鹏善, 等. 钢中带状组织及其研究现状[J]. 中国冶金, 2016, 26(4): 1-9.
JI Y, MIN Y F, LI P S, et al. Research status of banding phenomena in steels[J]. China Metallurgy, 2016, 26(4): 1-9.
|
| [3] |
LI J M. Study on slab quality control of high manganese steel for continuous casting[D]. Shenyang: Northeastern University, 2019. (李建民. 高锰钢连铸坯质量控制研究[D]. 沈阳: 东北大学, 2019.
LI J M. Study on slab quality control of high manganese steel for continuous casting[D]. Shenyang: Northeastern University, 2019.
|
| [4] |
WANG F, YUAN S Q, TIAN Y J, et al. Current research situation of alleviating or eliminating band structure in steel[J]. Hot Working Technology, 2013, 42(5): 52-54. (王芳, 袁书强, 田雨江, 等. 带状组织减轻或消除工艺研究现状[J]. 热加工工艺, 2013, 42(5): 52-54.
WANG F, YUAN S Q, TIAN Y J, et al. Current research situation of alleviating or eliminating band structure in steel[J]. Hot Working Technology, 2013, 42(5): 52-54.
|
| [5] |
LI Y H. Formation reason and elimination of banded structure in Q345R steel hot formed head[J]. Heat Treatment of Metals, 2016, 41(5): 200-202. (李玉红. Q345R钢热成型封头带状组织的成因和消除[J]. 金属热处理, 2016, 41(5): 200-202.
LI Y H. Formation reason and elimination of banded structure in Q345R steel hot formed head[J]. Heat Treatment of Metals, 2016, 41(5): 200-202.
|
| [6] |
CAI Z, HUANG Y H, ZHANG Y, et al. Mechanism of effect of cooling rate on ferrite/pearlite banded structure[J]. Journal of Iron and Steel Research, 2012, 24(6): 25-30. (蔡珍, 黄运华, 张跃, 等. 冷却速度对铁素体-珠光体带状组织的影响机制[J]. 钢铁研究学报, 2012, 24(6): 25-30.
CAI Z, HUANG Y H, ZHANG Y, et al. Mechanism of effect of cooling rate on ferrite/pearlite banded structure[J]. Journal of Iron and Steel Research, 2012, 24(6): 25-30.
|
| [7] |
CHENG X, GAO G, FU C, et al. Mechanistic understanding of banded microstructure and its effect on anisotropy of toughness in low carbon-low alloy steel[J]. Materials Science and Engineering: A, 2025, 919: 147507. doi: 10.1016/j.msea.2024.147507
|
| [8] |
LI W, ZHOU Y, CAO Z, et al. Mitigating hydrogen embrittlement sensitivity in quenching and partitioning steel by optimizing the microstructure of segregation bands[J]. Materials Letters, 2024, 371: 136975. doi: 10.1016/j.matlet.2024.136975
|
| [9] |
XIE Z L, CHEN J H, ZHANG B J, et al. Effect of normalizing temperature on microstructure and mechanical properties of cryogenic pressure vessel steel plate[J]. Heat Treatment of Metals, 2023, 48(9): 110-115. (谢章龙, 陈家辉, 张丙军, 等. 正火温度对低温压力容器钢板组织与力学性能的影响[J]. 金属热处理, 2023, 48(9): 110-115.
XIE Z L, CHEN J H, ZHANG B J, et al. Effect of normalizing temperature on microstructure and mechanical properties of cryogenic pressure vessel steel plate[J]. Heat Treatment of Metals, 2023, 48(9): 110-115.
|
| [10] |
LUO D, ZHANG Y W, ZHANG J M, et al. Effect of heat treatment in two phase zone on banded structure of Q345R pressure vessel steel[J]. Hot Working Technology, 2020, 49(2): 128-136. (罗登, 张勇伟, 张计谋, 等. 两相区热处理对Q345R压力容器钢带状组织的影响[J]. 热加工工艺, 2020, 49(2): 128-136.
LUO D, ZHANG Y W, ZHANG J M, et al. Effect of heat treatment in two phase zone on banded structure of Q345R pressure vessel steel[J]. Hot Working Technology, 2020, 49(2): 128-136.
|
| [11] |
SUN J, ZHANG L P, ZHENG G Y, et al. 22CrMoH gear steel banded organization causes and preventive measures[J]. Lai Steel Technology, 2005(3): 10-11. (孙进, 张利平, 郑桂芸, 等. 22CrMoH齿轮钢带状组织成因及预防措施[J]. 莱钢科技, 2005(3): 10-11.
SUN J, ZHANG L P, ZHENG G Y, et al. 22CrMoH gear steel banded organization causes and preventive measures[J]. Lai Steel Technology, 2005(3): 10-11.
|
| [12] |
WANG Y B. Study on the hardenability and band organization of 20CrMoH gear steel[D]. Kunming: Kunming University of Science and Technology, 2010. (王彦彬. 20CrMoH齿轮钢的淬透性及带状组织研究[D]. 昆明: 昆明理工大学, 2010.
WANG Y B. Study on the hardenability and band organization of 20CrMoH gear steel[D]. Kunming: Kunming University of Science and Technology, 2010.
|
| [13] |
ZHUANG J R, SUN S Q, LI M Z, et al. Research on isothermal normalizing process of TL-4521 gear forging billet[J]. MW Metal Forming, 2010, 000(21): 30-33. (庄稼稔, 孙少权, 李明哲, 等. TL-4521齿轮锻坯等温正火工艺的研究[J]. 金属加工(热加工), 2010, 000(21): 30-33.
ZHUANG J R, SUN S Q, LI M Z, et al. Research on isothermal normalizing process of TL-4521 gear forging billet[J]. MW Metal Forming, 2010, 000(21): 30-33.
|
| [14] |
WANG H Z, ZHAI Y W, ZHOU L Y. Isothermal normalizing process of 18CrNiMo7-6 gear steel directly after warm forging[J]. Heat Treatment of Metals, 2020, 45(11): 78-82. (王会珍, 翟月雯, 周乐育. 18CrNiMo7-6齿轮钢温锻后余热等温正火工艺[J]. 金属热处理, 2020, 45(11): 78-82.
WANG H Z, ZHAI Y W, ZHOU L Y. Isothermal normalizing process of 18CrNiMo7-6 gear steel directly after warm forging[J]. Heat Treatment of Metals, 2020, 45(11): 78-82.
|
| [15] |
BOR A S. Effect of pearlite banding on mechanical properties of hot-rolled steel plates[J]. ISIJ International, 1991, 31(12): 1445-1446. doi: 10.2355/isijinternational.31.1445
|
| [16] |
ZHANG S, REN Y, WANG S, et al. Effect of thermo-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393. (张帅, 任毅, 王爽, 等. 控轧控冷工艺对海洋高应变管线钢性能和组织的影响[J]. 钢铁研究学报, 2023, 35(11): 1384-1393.
ZHANG S, REN Y, WANG S, et al. Effect of thermo-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393.
|
| [17] |
GAO P, GAO Y, CHEN J, et al. Effect of tempering temperature on microstructure and properties of 1000 MPa high strength steel produced by DQ process[J]. Heat Treatment of Metals, 2019, 44(10): 72-76. (高朋, 高野, 陈俊, 等. 回火温度对DQ工艺1000 MPa级高强钢组织及性能的影响[J]. 金属热处理, 2019, 44(10): 72-76.
GAO P, GAO Y, CHEN J, et al. Effect of tempering temperature on microstructure and properties of 1000 MPa high strength steel produced by DQ process[J]. Heat Treatment of Metals, 2019, 44(10): 72-76.
|
| [18] |
KITAHARA H, UEJI R, TSUJI N, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54(5): 1279-1288. doi: 10.1016/j.actamat.2005.11.001
|
| [19] |
XU F, SUN Q, MENG J W. Effect of solution treatment temperature on microstructure and properties of ultra-low carbon 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2024, 49(8): 124-129. (徐锋, 孙强, 孟吉炜. 固溶温度对超低碳15-5PH沉淀硬化不锈钢组织和性能的影响[J]. 金属热处理, 2024, 49(8): 124-129.
XU F, SUN Q, MENG J W. Effect of solution treatment temperature on microstructure and properties of ultra-low carbon 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2024, 49(8): 124-129.
|
| [20] |
ZHANG X G, MIYAMOTO G, TOJI Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy[J]. Acta Materialia, 2018, 144: 601-612. doi: 10.1016/j.actamat.2017.11.003
|