| Citation: | HAN Chufei, DONG Yi, SHI Xiaoguang, SUN Chengqian, WANG Junxiong, LI Zhi, XU Haijian. The influence of relaxation time on the microstructure and properties of thin-gauge 450 MPa grade high-strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 186-190, 200. doi: 10.7513/j.issn.1004-7638.2025.06.023 |
| [1] |
ZHENG L, FU J Y. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10. (郑磊, 付俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006, 41(10): 1-10. doi: 10.13228/j.boyuan.issn0449-749x.2006.10.001
ZHENG L, FU J Y. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10. doi: 10.13228/j.boyuan.issn0449-749x.2006.10.001
|
| [2] |
QIU S J, YAN J H, TANG H, et al. Study on microstructure and properties of 460 MPa grade fire and weather resistant building steel[J]. Hot Working Technology, 2024, 53(16): 129-133. (裘韶均, 闫江辉, 唐辉, 等. 460 MPa级耐火耐候建筑用钢的组织和性能研究[J]. 热加工工艺, 2024, 53(16): 129-133. doi: 10.14158/j.cnki.1001-3814.20221979
QIU S J, YAN J H, TANG H, et al. Study on microstructure and properties of 460 MPa grade fire and weather resistant building steel[J]. Hot Working Technology, 2024, 53(16): 129-133. doi: 10.14158/j.cnki.1001-3814.20221979
|
| [3] |
XU Z G, WANG X N, LIAN B J, et al. Research on the hot deformation behavior of hot-rolled 780 MPa ultra-high strength beam steel[J]. Steel Rolling, 2012, 5(2): 5-9. (徐兆国, 王晓南, 梁冰洁, 等. 热轧780 MPa级超高强大梁钢的热变形行为研究[J]. 轧钢, 2012, 5(2): 5-9. doi: 10.3969/j.issn.1003-9996.2012.05.002
XU Z G, WANG X N, LIAN B J, et al. Research on the hot deformation behavior of hot-rolled 780 MPa ultra-high strength beam steel[J]. Steel Rolling, 2012, 5(2): 5-9. doi: 10.3969/j.issn.1003-9996.2012.05.002
|
| [4] |
SHANMUUGAM S, MISRA R D K, HARTMANN J, et al. Microstructure of high strength niobium-containing pipeline steel[J]. Materials Science and Engineering A, 2006, 441(1-2): 215-229. doi: 10.1016/j.msea.2006.08.017
|
| [5] |
QIU J A, WU K M, LI J H, et al. Effect of silicon on ultra-low temperature toughness of Nb-Ti microalloyed cryogenicpressure vessel steels[J]. Materials Characterization, 2013, 83: 123-128. doi: 10.1016/j.matchar.2013.06.013
|
| [6] |
HU J, DU L X, WANG J J. Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb-Ti bainitic high strength steel[J]. Materials Science and Engineering A, 2012, 554: 79-85.
|
| [7] |
WANG Q M, LIU Y X. Effect of relaxation time after finishing rolling on YS-UTS ratio of Q345GJC steel plate for high-rise building[J]. Special steel, 2009, 30(3): 66-68. (王庆敏, 刘应心. 热轧后弛豫时间对Q345GJC高层建筑用钢板屈强比的影响[J]. 特殊钢, 2009, 30(3): 66-68.
WANG Q M, LIU Y X. Effect of relaxation time after finishing rolling on YS-UTS ratio of Q345GJC steel plate for high-rise building[J]. Special steel, 2009, 30(3): 66-68.
|
| [8] |
ZHANG L N, QI L, XIAO H Y. Effects of relaxation time on microstructure and mechanical properties of X100 pipeline steel[J]. Materials and Mechanical Engineering, 2015, 39(3): 16-21. (张丽娜, 齐亮, 肖鸿雁. 弛豫时间对X100管线钢组织和力学性能的影响[J]. 机械工程材料, 2015, 39(3): 16-21.
ZHANG L N, QI L, XIAO H Y. Effects of relaxation time on microstructure and mechanical properties of X100 pipeline steel[J]. Materials and Mechanical Engineering, 2015, 39(3): 16-21.
|
| [9] |
HU L J, SHANG C J, WANG X M, et al. Effect of cooling rate on microstructure in relaxation-precipitation controlled phase transformation technology[J]. Journal of University of Science and Technology Beijing, 2004, 26(3): 260-263. (胡良均, 尚成嘉, 王学敏, 等. 弛豫-析出-控制相变技术中冷却速度对组织的影响[J]. 北京科技大学学报, 2004, 26(3): 260-263. doi: 10.3321/j.issn:1001-053X.2004.03.009
HU L J, SHANG C J, WANG X M, et al. Effect of cooling rate on microstructure in relaxation-precipitation controlled phase transformation technology[J]. Journal of University of Science and Technology Beijing, 2004, 26(3): 260-263. doi: 10.3321/j.issn:1001-053X.2004.03.009
|
| [10] |
ZHENG X F, KANG Y L, MENG D L, et al. Effects of finish rolling temperature on the microstructure and mechanical properties of X80 high deformability pipeline steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(5): 557-562. (郑晓飞, 康永林, 孟德亮, 等. 终轧温度对X80抗大变形管线钢组织性能的影响[J]. 北京科技大学学报, 2011, 33(5): 557-562.
ZHENG X F, KANG Y L, MENG D L, et al. Effects of finish rolling temperature on the microstructure and mechanical properties of X80 high deformability pipeline steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(5): 557-562.
|
| [11] |
ZHAO L Y, ZHANG Z J, SHI X B, et al. Microstructure and mechanical property of X70 grade high deformability pipeline steel[J]. Iron and Steel, 2013, 48(7): 65-69. (赵连玉, 张志军, 史显波, 等. X70级抗大变形管线钢的组织与性能[J]. 钢铁, 2013, 48(7): 65-69.
ZHAO L Y, ZHANG Z J, SHI X B, et al. Microstructure and mechanical property of X70 grade high deformability pipeline steel[J]. Iron and Steel, 2013, 48(7): 65-69.
|
| [12] |
HAN C L, HUANG L Q, DONG Z B, et al. Effect of molybdenum contents and cooling processes subsequent to hot-rolling on microstructure and mechanical properties of Q500qE bridge steel plate[J]. Shanghai Metals, 2022, 44(5): 55-59. (韩承良, 黄乐庆, 董占斌, 等. 钼含量和热轧后的冷却工艺对Q500qE桥梁钢板组织和力学性能的影响[J]. 上海金属, 2022, 44(5): 55-59. doi: 10.19947/j.issn.1001-7208.2022.05.010
HAN C L, HUANG L Q, DONG Z B, et al. Effect of molybdenum contents and cooling processes subsequent to hot-rolling on microstructure and mechanical properties of Q500qE bridge steel plate[J]. Shanghai Metals, 2022, 44(5): 55-59. doi: 10.19947/j.issn.1001-7208.2022.05.010
|
| [13] |
WANG C Y, HONG X L, YANG L, et al. Low temperature mechanical properties of 460 MPa polar ship steel and its welded joints[J]. China Metallurgy, 2024, 34(7): 58-67. (王超逸, 洪晓莉, 严玲, 等. 460 MPa极地船舶用钢及焊接接头低温力学性能[J]. 中国冶金, 2024, 34(7): 58-67.
WANG C Y, HONG X L, YANG L, et al. Low temperature mechanical properties of 460 MPa polar ship steel and its welded joints[J]. China Metallurgy, 2024, 34(7): 58-67.
|
| [14] |
YU Q B, LIU X H, WANG G D. The effect of delay time after hot rolling on the grain size of ferrite[J]. ISIJ International, 2004, 44(4): 710-715.
|
| [15] |
HUO X D, XIA J N, LI L J, et al. Research and development of titanium microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 105-112. (霍向东, 夏继年, 李烈军, 等. 钛微合金化高强钢的研究与发展[J]. 钢铁钒钛, 2017, 38(4): 105-112. doi: 10.7513/j.issn.1004-7638.2017.04.019
HUO X D, XIA J N, LI L J, et al. Research and development of titanium microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 105-112. doi: 10.7513/j.issn.1004-7638.2017.04.019
|
| [16] |
YU Y, HU B, HAO M, et al. Determining role of heteroge neous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28: 816-821.
|
| [17] |
KAWATAH H, UMEZAWAO O. Influence of microstructure constituents on ductile to brittle transition behavior in multi phase steel sheets[J]. ISIJ International, 2021, 61(3): 1002-1008. doi: 10.2355/isijinternational.ISIJINT-2020-595
|