Volume 42 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Li Zhuochen, Du Guangchao, Fan Chuanlin, Zhu Qingshan. Review on research progress of high purity vanadium pentoxide preparation by chlorination process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 8-15, 92. doi: 10.7513/j.issn.1004-7638.2021.01.002
Citation: Li Zhuochen, Du Guangchao, Fan Chuanlin, Zhu Qingshan. Review on research progress of high purity vanadium pentoxide preparation by chlorination process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 8-15, 92. doi: 10.7513/j.issn.1004-7638.2021.01.002

Review on research progress of high purity vanadium pentoxide preparation by chlorination process

doi: 10.7513/j.issn.1004-7638.2021.01.002
  • Received Date: 2020-12-18
  • Publish Date: 2021-02-10
  • As a crucial raw material for all-vanadium redox flow battery(VRFB), the high purity vanadium pentoxide (V2O5) is under an increasingly urgent demand with the rapid development of VRFB in recent years. Based on this background, a plenty of processes have been proposed for high purity V2O5 preparation, among which the chlorination process is paid more and more attentions due to the remarkable advantages of high efficiency, favorable selectivity, high purity of products and eco-friendly feature. In this paper, we reviewed the research progress with relevant literatures concentrated on the three key procedures of high purity V2O5 preparation via chlorination process, including thermodynamics, kinetics and processes of chlorination of raw materials, purification of crude vanadium oxytrichloride (VOCl3) and conversion of VOCl3 into V2O5. The high-efficient utilization of secondary vanadium resources, the selective hydrolysis of crude vanadium oxychloride to remove TiCl4 and conversion of VOCl3 into V2O5 by catalytic oxidation are proposed as the development trends of the corresponding key procedures. Finally, carrying out the pilot test and developing the key equipment for preparing high-purity vanadium pentoxide by chlorination process are the key and difficult points for realizing the industrial production in the future.
  • loading
  • [1]
    Peng H. A literature review on leaching and recovery of vanadium[J]. Journal of Environmental Chemical Engineering, 2019,7(5):103313. doi: 10.1016/j.jece.2019.103313
    Chen Donghui. Nnual evaluation for vanadium industry in 2018[J]. Hebei Metallurgy, 2019,(8):5−15. (陈东辉. 钒产业2018年年度评价[J]. 河北冶金, 2019,(8):5−15.
    Cui X, Zhang G, Chen X, et al. Purification of V2O5 and its application in all-vanadium redox flow batteries[J]. Materials Research Express, 2019,6(8):085552. doi: 10.1088/2053-1591/ab27e4
    Li H, Tian H, Chang T H, et al. High-purity V2O5 nanosheets synthesized from gasification waste: flexible energy storage devices and environmental assessment[J]. ACS Sustainable Chemistry & Engineering, 2019,7(14):12474−12484.
    Choi C, Kim S, Kim R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017,69:263−274. doi: 10.1016/j.rser.2016.11.188
    He D, Feng Q, Zhang G, et al. An environmentally-friendly technology of vanadium extraction from stone coal[J]. Minerals Engineering, 2007,20(12):1184−1186. doi: 10.1016/j.mineng.2007.04.017
    Wang Bin. Study on extraction of vanadium from acid leaching solution of stone coal with ion exchange resin[J]. Iron Steel Vanadium Titanium, 2007,28(1):22−25. (王斌. 石煤浸出液离子交换法提钒的研究[J]. 钢铁钒钛, 2007,28(1):22−25. doi: 10.3969/j.issn.1004-7638.2007.01.005
    Thomas J, Surender G D, Reddy M L P. Solvent extraction separation of vanadium(V) from multimetal chloride solutions using tributyl phosphate[J]. Separation Science & Technology, 2003,38(15):3761−3774.
    Zhao J, Hu Q, Li Y, et al. Efficient separation of vanadium from chromium by a novel ionic liquid-based synergistic extraction strategy[J]. Chemical Engineering Journal, 2015,264:487−496. doi: 10.1016/j.cej.2014.11.071
    Gaballah I, Djona M. Recovery of Co, Ni, Mo, and V from unroasted spent hydrorefining catalysts by selective chlorination[J]. Metallurgical and Materials Transactions B, 1995,26(1):41−50. doi: 10.1007/BF02648975
    McCarley R E, Roddy J W. The preparation of high purity vanadium pentoxide by a chlorination procedure[J]. Journal of the Less Common Metals, 1960,2(1):29−35. doi: 10.1016/0022-5088(60)90036-9
    Jiang D, Zhang H, Xu H, et al. Chlorination and purification of vanadium pentoxide with anhydrous aluminum chloride[J]. Journal of Alloys and Compounds, 2017,709:505−510. doi: 10.1016/j.jallcom.2017.03.123
    Brocchi E A, Navarro R C S, Moura F J. A chemical thermodynamics review applied to V2O5 chlorination[J]. Thermochimica Acta, 2013,559:1−16. doi: 10.1016/j.tca.2013.01.025
    Gaballah I, Djona M, Allain E. Kinetics of chlorination and carbochlorination of vanadium pentoxide[J]. Metallurgical & Materials Transactions B, 1995,26(4):711−718.
    Du G, Fan C, Yang H, et al. Selective extraction of vanadium from pre-oxidized vanadium slag by carbochlorination in fluidized bed reactor[J]. Journal of Cleaner Production, 2019,237:117765. doi: 10.1016/j.jclepro.2019.117765
    Mink G, Bertóti I, Székely T. Chlorination of V2O5 by CCl4 Adsorption and steady state reaction[J]. Reaction Kinetics and Catalysis Letters, 1985,27(1):33−38. doi: 10.1007/BF02064456
    Zheng H, Sun Y, Lu J, et al. Vanadium extraction from vanadium-bearing titanomagnetite by selective chlorination using chloride wastes (FeCl x)[J]. Journal of Central South University, 2017,24(2):311−317. doi: 10.1007/s11771-017-3432-x
    Zhang Y, Hu Y, Bao S. Vanadium emission during roasting of vanadium-bearing stone coal in chlorine[J]. Minerals Engineering, 2012,30:95−98. doi: 10.1016/j.mineng.2012.02.003
    (莫畏, 邓国珠, 罗方承. 钛冶金(第二版)[M]. 北京: 冶金工业出版社, 2007.)

    Mo Wei, Deng Guozhu, Luo Fangcheng. Titanium metallurgy[M]. Beijing: Metallurgical Industry Press, 2007.
    Lynch D C. Conversion of VOCl3 to VOCl2 in liquid TiCl4[J]. Metallurgical and Materials Transactions B, 2002,33(1):142−146. doi: 10.1007/s11663-002-0096-0
    Uda T, Okabe T H, Waseda Y, et al. Contactless electrochemical reduction of titanium (II) chloride by aluminum[J]. Metallurgical and Materials Transactions B, 2000,31(4):713−721. doi: 10.1007/s11663-000-0110-3
    Liang Qiang. The engineering design issues of removing vanadium from raw titanium tetrachloride by copper wire[J]. Guizhou Science, 2011,29(4):65−68. (梁强. 四氯化钛精制中铜丝除钒工程设计问题的探讨[J]. 贵州科学, 2011,29(4):65−68. doi: 10.3969/j.issn.1003-6563.2011.04.014
    Zhou Li. Study on the organics pretreatment of crude titanium tetrachloride with high content of vanadium for vanadium removal[J]. Iron Steel Vanadium Titanium, 2017,38,(4):24−28. (周丽. 高含钒粗四氯化钛有机物预处理除钒工艺研究[J]. 钢铁钒钛, 2017,38,(4):24−28. doi: 10.7513/j.issn.1004-7638.2017.04.005
    Long Xiang, Li Haiyan, Yang Zheng, et al. Experimental study on removing vanadium from titanium tetrachloride with mineral oil[J]. Hydrometallurgy of China, 2018,37(4):59−62. (龙翔, 李海艳, 杨振, 等. 用矿物油从四氯化钛中去除钒试验研究[J]. 湿法冶金, 2018,37(4):59−62.
    Yang Yibang, Wang Fuwen, Li Baojin, et al. Development and evaluation of process for removing vanadium from crude titanium tetrachloride[J]. Materials Reports, 2012,26(1):157−160. (杨易邦, 王富文, 李保金, 等. 粗四氯化钛除钒工艺进展及评价[J]. 材料导报, 2012,26(1):157−160.
    Fan C, Yang H, Zhu Q, et al. Selective hydrolysis of trace TiCl4 from VOCl3 for preparation of high purity V2O5[J]. Separation and Purification Technology, 2017,185:196−201. doi: 10.1016/j.seppur.2017.05.002
    Lassègue P, Noé L, Monthioux M, et al. Fluidized bed chemical vapor deposition of copper nanoparticles on multi-walled carbon nanotubes[J]. Surface and Coatings Technology, 2017,331:129−136. doi: 10.1016/j.surfcoat.2017.10.046
    Ke Chen Z, Jing Wang L, Wang H, et al. Effect of microstructure on impact resistance of chemical vapor deposited SiC coating on graphite substrate[J]. Surface and Coatings Technology, 2019,380:125076. doi: 10.1016/j.surfcoat.2019.125076
    Liu X, Wang W, Zhang H, et al. La-doped diamond films prepared through microwave plasma chemical vapor deposition[J]. Thin Solid Films, 2019,692:137620. doi: 10.1016/j.tsf.2019.137620
    Vahlas C, Caussat B, Serp P, et al. Principles and applications of CVD powder technology[J]. Materials Science and Engineering: R: Reports, 2006,53(1−2):1−72. doi: 10.1016/j.mser.2006.05.001
    Gao J M, Song X F, Hu J, et al. Superhydrophobic graphenic carbon nanowalls fabricated by one-step PECVD[J]. Materials Letters, 2016,184:273−277. doi: 10.1016/j.matlet.2016.07.127
    Fan C, Xu J, Yang H, et al. High-purity, low-Cl V2O5 via the gaseous hydrolysis of VOCl3 in a fluidized bed[J]. Particuology, 2020,49:9−15. doi: 10.1016/j.partic.2018.12.005
    (范川林, 朱庆山, 杨海涛. 一种氯化法制备高纯五氧化二钒粉体的系统及方法, 中国: CN107555478 A[P]. 2017-06-13.)

    Fan Chuanlin, Zhu Qingshan, Yang Haitao. A system and method for preparation of high purity vanadium pentoxide powder by chlorination method, China: CN107555478 A[P]. 2017-06-13.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (973) PDF downloads(237) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint