Citation: | Fang Qiang, Wang Yin, Yin Jingjing. Constitutive model for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of work softening[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 47-51, 72. doi: 10.7513/j.issn.1004-7638.2021.04.008 |
[1] |
Rugg David, Dixon Mark, Burrows Justin. High-temperature application of titanium alloys in gas turbines[J]//Material Life Cycle Opportunities and Threats – an Industrial Perspective. Materials at High Temperatures, 2016, 33 (4−5): 536−541.
|
[2] |
Park Chan Hee, Kim Jeoung Han, Hyun Yong-Taek, et al. The origins of flow softening during high-temperature deformation of a Ti–6Al–4V alloy with a lamellar microstructure[J]. Journal of Alloys and Compounds, 2014,582:126−129. doi: 10.1016/j.jallcom.2013.08.041
|
[3] |
Bai Q, Lin J, Dean T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions[J]. Materials Science and Engineering: A, 2013,559:352−358. doi: 10.1016/j.msea.2012.08.110
|
[4] |
Alabort E, Putman D, Reed R C. Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications[J]. Acta Materialia, 2015,95:428−442. doi: 10.1016/j.actamat.2015.04.056
|
[5] |
Lu Jiapeng, Chen Jianbin, Fang Qihong, et al. Finite element simulation for Ti-6Al-4V alloy deformation near the exit of orthogonal cutting[J]. The International Journal of Advanced Manufacturing Technology, 2016,85(9−12):2377−2388. doi: 10.1007/s00170-015-8077-z
|
[6] |
Bennett, Christopher J, Sun Wei. Optimisation of material properties for the modelling of large deformation manufacturing processes using a finite element model of the gleeble compression test[J]. The Journal of Strain Analysis for Engineering Design, 2014,49(6):429−436. doi: 10.1177/0309324713520310
|
[7] |
Carsi Manuel, Bartolome M Jesús, Rieiro Ignacio, et al. The effect of heterogeneous deformation on the hot deformation of WE54 magnesium alloy[J]. Materials & Design, 2014,58:30−35.
|
[8] |
Hu H E, Wang X Y, Deng L. Comparative study of hot-processing maps for 6061 aluminium alloy constructed from power constitutive equation and hyperbolic sine constitutive Equation[J]. Materials Science and Technology, 2014,30(11):1321−1327. doi: 10.1179/1743284714Y.0000000569
|
[9] |
Li X W, Lu M X, Sha Ai X, et al. The tensile deformation behavior of Ti–3Al–4.5V–5Mo titanium alloy[J]. Materials Science and Engineering: A, 2008,490(1−2):193−197. doi: 10.1016/j.msea.2008.01.086
|
[10] |
Gronostajski Z. The constitutive equations for FEM analysis[J]. Journal of Materials Processing Technology, 2000,106(1−3):40−44. doi: 10.1016/S0924-0136(00)00635-X
|
[11] |
Gan Chunlei, Zheng Kaihong, Qi Wenjun, et al. Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain[J]. Transactions of Nonferrous Metals Society of China, 2014,24(11):3486−3491. doi: 10.1016/S1003-6326(14)63492-0
|
[12] |
Moré Jorge J. The levenberg-marquardt algorithm: Implementation and theory[M]//Numerical Analysis. Springer, 1978: 105−116.
|