Citation: | Cai Jianyu, Peng Zhaofeng, Song Liyun, Hou Huanyu, Li Jian. Effect of SO2 on adsorption of NO from sintering flue gas by modified activated carbon[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 73-78. doi: 10.7513/j.issn.1004-7638.2021.04.013 |
[1] |
(都亚茹. 改性活性碳纤维吸附氮氧化物的实验研究[D]. 太原: 太原理工大学, 2019.)
Du Yaru. Experimental study on adsorption of nitrogen oxides by modified activated carbon fibers[D]. Taiyuan: Taiyuan University of Technology, 2019.
|
[2] |
Wang Peng, Wang Xuehai, Wang Kuanling, et al. Research development of new type metal organic framework catalysts for the selective catalytic reduction of NOx[J]. Industrial Catalysis, 2019,27(5):1−4. (汪鹏, 王学海, 王宽岭, 等. 新型金属有机骨架材料催化剂选择性催化还原氮氧化物研究进展[J]. 工业催化, 2019,27(5):1−4. doi: 10.3969/j.issn.1008-1143.2019.05.001
|
[3] |
Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon, 2000,38(2):227−239. doi: 10.1016/S0008-6223(99)00179-7
|
[4] |
Izquierdo M T, Rubio B, Mayoral C, et al. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas[J]. Fuel, 2003,82(2):147−151. doi: 10.1016/S0016-2361(02)00249-1
|
[5] |
Huang Bangfu, Geng Chaoyang, Shi Zhe, et al. Influence factors and preparation conditions of Ni/AC used as a low-temperature desulfurizer[J]. Ecology and Environment, 2018,27(1):108−114. (黄帮福, 耿朝阳, 施哲, 等. 载镍活性炭低温脱硫及其制备影响因素研究[J]. 生态环境学报, 2018,27(1):108−114.
|
[6] |
Zhao Simeng, Huang Bangfu, Liu Lanpeng, et al. Study on adsorption properties of coconut shell activated carbon modified by HNO3 and γ-Fe2O3[J]. Powder Metallurgy Technology, 2020,38(2):121−125. (赵思孟, 黄帮福, 刘兰鹏, 等. HNO3和γ-Fe2O3改性椰壳活性炭吸附性能研究[J]. 粉末冶金技术, 2020,38(2):121−125.
|
[7] |
Li X Q, Zhang L, Yang Z Q, et al. Hydrophobic modified activated carbon using PDMS for the adsorption of VOCs in humid condition[J]. Separation and Purification Technology, 2020,239:116517. doi: 10.1016/j.seppur.2020.116517
|
[8] |
Ma L, He M Y, Fu P B, et al. Adsorption of volatile organic compounds on modified spherical activated carbon in a new cyclonic fluidized bed[J]. Separation and Purification Technology, 2020,235:116146. doi: 10.1016/j.seppur.2019.116146
|
[9] |
Li Xia, Chen Sili, Zhuo Qiongfang, et al. On the adsorptive performance of carbaryl onto the activated carbons with the thermal treatment[J]. Journal of Safety and Environment, 2017,17(5):1915−1921. (李霞, 陈思莉, 卓琼芳, 等. 热改性活性炭吸附甲萘威的性能[J]. 安全与环境学报, 2017,17(5):1915−1921.
|
[10] |
Liu G F, Li X C, Campos L C. Role of the functional groups in the adsorption of bisphenol A onto activated carbon: Thermal modification and mechanism[J]. Journal of Water Supply: Research and Technology - Aqua, 2017,66(2):105−115. doi: 10.2166/aqua.2017.047
|
[11] |
Xiao Chengyuan, Zhang Wenli, Lin Haibo, et al. Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode[J]. New Carbon Materials, 2019,34(4):341−348. (肖程元, 张文礼, 林海波, 等. 稻壳基活性炭的热处理改性及其电化学性能(英文)[J]. 新型炭材料, 2019,34(4):341−348. doi: 10.1016/S1872-5805(19)30021-6
|
[12] |
Shi Yan, Kong Zheng, Hu Changqing, et al. Microwave combined modified activated carbon for treatment of flue gas desulfurization efficiency of different concentrations of SO2[J]. Iron Steel Vanadium Titanium, 2019,40(5):84−88. (石焱, 孔征, 胡长庆, 等. 微波联合改性活性炭处理不同SO2浓度烟气脱硫效率[J]. 钢铁钒钛, 2019,40(5):84−88.
|
[13] |
Qiu W J, Dou K, Zhou Y, et al. Hierarchical pore structure of activated carbon fabricated by CO2/microwave for volatile organic compounds adsorption[J]. Chinese Journal of Chemical Engineering, 2018,26(1):81−88. doi: 10.1016/j.cjche.2017.04.006
|
[14] |
Wang L, Chen Z Z, Wen H, et al. Microwave assisted modification of activated carbons by organic acid ammoniums activation for enhanced adsorption of acid red 18[J]. Powder Technology, 2018,323(1):230−237.
|
[15] |
Yang Kun, Liu Yang, Yang Jing. Advances in the preparation and modification of activated carbon adsorption VOCs[J]. Guangdong Chemical Industry, 2018,45(1):87−89. (杨坤, 刘洋, 杨静. 制备及改性活性炭对 VOCs 吸附的研究进展[J]. 广东化工, 2018,45(1):87−89. doi: 10.3969/j.issn.1007-1865.2018.01.041
|
[16] |
Ebrahimi B, Mohammadiazar S, Ardalan S. New modified carbon based solid phase extraction sorbent prepared from wild cherry stone as natural raw material for the pre-concentration and determination of trace amounts of copper in food samples[J]. Microchemical Journal, 2019,147:666−673. doi: 10.1016/j.microc.2019.03.062
|
[17] |
Zhan Xiaocui, Kuang Wenjun, Ding Ding, et al. Effect of ultrasonic modification on catalytic ozonation of phenol over a Mn/AC catalyst[J]. Modern Chemical Industry, 2019,39(2):103−107. (占小翠, 旷文君, 丁丁, 等. 超声波改性强化Mn/AC催化臭氧化降解苯酚效能分析[J]. 现代化工, 2019,39(2):103−107.
|
[18] |
Jauto A H, Memon S A, Channa A, et al. Efficient removal of cyanide from industrial effluent using acid treated modified surface activated carbon[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019,41(22):2715−2724. doi: 10.1080/15567036.2019.1568643
|
[19] |
Rashid U S, Bezbaruah A N. Citric acid modified granular activated carbon for enhanced defluoridation[J]. Chemosphere, 2020,252:126639. doi: 10.1016/j.chemosphere.2020.126639
|
[20] |
Su P D, Zhang J K, Tang J W, et al. Preparation of nitric acid modified powder activated carbon to remove trace amount of Ni(II) in aqueous solution[J]. Water Science and Technology: Journal of the International Association on Water Pollution Research, 2019,80(1):86−97. doi: 10.2166/wst.2019.248
|
[21] |
Chen Mingyan, Chen Jie, Liu Yucheng, et al. Desulfurization performance of activated carbon fibers modified by supported metal[J]. Environmental Protection of Chemical Industry, 2018,38(6):728−732. (陈明燕, 陈洁, 刘宇程, 等. 负载金属改性活性炭纤维的脱硫性能[J]. 化工环保, 2018,38(6):728−732. doi: 10.3969/j.issn.1006-1878.2018.06.018
|
[22] |
Sharififard H, Pepe F, Aprea P, et al. Chemical modification of activated carbon surface with iron functional groups for efficient separation of vanadium: Batch and column study[J]. Research on Chemical Intermediates, 2017,43(11):6553−6570. doi: 10.1007/s11164-017-3004-6
|
[23] |
Zhang Wenliang, Qin Fanfan, Fan Xing, et al. Research progress on preparation and application technology of activated carbon loaded metal[J]. Shandong Chemical Industry, 2019,48(20):80−81. (张文亮, 秦凡凡, 樊星, 等. 金属负载活性炭的制备与应用技术研究进展[J]. 山东化工, 2019,48(20):80−81. doi: 10.3969/j.issn.1008-021X.2019.20.030
|
[24] |
Hou Jianfeng, Wang Zhaowen, Li Tuofu, et al. High temperature modification on coconut shell activated carbon and adsorptivity of the activated carbon for K+ in aluminum electrolyte[J]. Journal of Northeastern University (Natural Science), 2016,37(12):1740−1744. (侯剑峰, 王兆文, 李拓夫, 等. 椰壳类活性炭高温改性及吸附铝电解质熔盐中 K+ 的性能[J]. 东北大学学报 (自然科学版), 2016,37(12):1740−1744.
|
[25] |
Huang Bangfu, Geng Chaoyang, Shi Zhe, et al. Desulfurizing property of activated carbon modified by acid and alkali and nickel[J]. Bulletin of the Chinese Ceramic Society, 2018,(11):42. (黄帮福, 耿朝阳, 施哲, 等. 酸碱改性及负载镍对活性炭脱硫性能影响研究[J]. 硅酸盐通报, 2018,(11):42.
|
[26] |
Lee Y W, Choi D K, Park J W. Surface chemical characterization using AES/SAM and TOF-SIMS on KOH-impregnated activated carbon by selective adsorption of NOx[J]. Industrial & Engineering Chemistry Research, 2001,40(15):3337−3345.
|
[27] |
Guo Y Y, Li Y R, Zhu T Y, et al. Effects of Concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy & Fuels, 2013,27(1):360−366.
|
[28] |
Rubel A M, Stencel J M. The effect of low-concentration SO2 on the adsorption of NO from gas over activated carbon[J]. Fuel, 1997,76(6):521−526. doi: 10.1016/S0016-2361(96)00221-9
|
[29] |
Davini P. SO2 and NOx adsorption properties of activated carbons obtained from a pitch containing iron derivatives[J]. Carbon, 2001,39(14):2173−2179. doi: 10.1016/S0008-6223(01)00035-5
|
[30] |
Tang Q, Zhang Z G, Zhu W P, et al. SO2 and NO selective adsorption properties of coal-based activated carbons[J]. Fuel, 2005,84(4):461−465. doi: 10.1016/j.fuel.2004.03.010
|
[31] |
Dai Shifeng, Ren Deyi, Song Jianfang, et al. Application of XPS in research on occurrence of organic sulfur in vitrain[J]. Journal of China University of Mining, 2002,31(3):225−228. (代世峰, 任德贻, 宋建芳, 等. 应用 XPS 研究镜煤中有机硫的存在形态[J]. 中国矿业大学学报, 2002,31(3):225−228. doi: 10.3321/j.issn:1000-1964.2002.03.002
|
[32] |
Xu Ning, Tao Xiuxiang, Xie Maohua, et al. Study on variation of sulfur chemical forms in microwave desulfurized coal based on XPS[J]. Coal Engineering, 2014,46(12):111−113. (许宁, 陶秀祥, 谢茂华, 等. 基于 XPS 的微波脱硫前后煤中硫形态的变化研究[J]. 煤炭工程, 2014,46(12):111−113. doi: 10.11799/ce201412036
|
[33] |
Cai Chuanchuan, Yang Minghu, Pan Lulu, et al. Study of types and content of sulfur in coal samples of different densities using X-ray photoelectron spectroscopy(XPS)[J]. Coal Prepapation Technology, 2018,(5):56−59. (蔡川川, 杨明虎, 潘露露, 等. 基于XPS技术的不同密度煤样中硫的类型和含量研究[J]. 选煤技术, 2018,(5):56−59.
|
[34] |
Liu Yifeng, Shen Benjun, Pi Zhipeng, et al. Oxidation transferring mechanism of SO2 in FCC flue gas over CeO2 surface[J]. Journal of Chemical Industry and Engineering, 2016,67(12):5015−5023. (刘逸锋, 沈本贤, 皮志鹏, 等. CeO2 表面氧化转移 FCC 烟气中 SO2 的反应过程[J]. 化工学报, 2016,67(12):5015−5023.
|
[35] |
Ge Tao, Ma Xiangmei. XPS study on occurrence characteristics of carbon, oxygen, nitrogen and sulfur in coking coal[J]. Coal Technology, 2018,37(3):293−295. (葛涛, 马祥梅. 炼焦煤中碳、氧、氮、硫赋存特征的XPS研究[J]. 煤炭技术, 2018,37(3):293−295.
|