Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
He Luyao, Wang Xin, Hu Bing, Gan Min, Zhu Liang, Wei Jinchao, Dai Youxun. Recirculating process of pellet exhaust gas from grate-kiln and numerical simulation[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 85-91. doi: 10.7513/j.issn.1004-7638.2021.04.015
Citation: He Luyao, Wang Xin, Hu Bing, Gan Min, Zhu Liang, Wei Jinchao, Dai Youxun. Recirculating process of pellet exhaust gas from grate-kiln and numerical simulation[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 85-91. doi: 10.7513/j.issn.1004-7638.2021.04.015

Recirculating process of pellet exhaust gas from grate-kiln and numerical simulation

doi: 10.7513/j.issn.1004-7638.2021.04.015
  • Received Date: 2020-12-11
  • Publish Date: 2021-08-10
  • Aiming at the problems of large exhaust gas discharge and low waste heat utilization rate of the grate-kiln ring cooler, a waste gas cycle technology that recycles the hot waste gas from the transitional preheating section to the second section of the circular cooling machine, was proposed. Then the pellet cooling process after using the waste gas cycle was simulated and studied. Based on the theory of computational fluid dynamics and combined with the local non-thermodynamic equilibrium theory and the magnetite oxidation reaction model, a numerical simulation model was established by CFD software to reveal the influence of exhaust gas cycle on pellet cooling. The results show that the exhaust gas temperature of the second cooling stage increases from 511 ℃ to 523 ℃ after adapting the flue gas circulation system, improving the heat utilization efficiency. The exhaust gas emission can be reduced by 11.5%, and the energy occupying 3.45% of the total heat expenditure for pellet production can be recovered. This study provides a new direction for further energy saving and emission reduction in pellet production, which is of great significance for pellet cleaner production.
  • loading
  • [1]
    Li Xinchuang. Ultra-low emission is a major green revolution in the history of iron and steel in China—Interpretation of opinions on promoting the implementation of ultra-low emission in iron and steel industry[J]. Chinese Iron and Steel Industry, 2019,(6):9−19. (李新创. 超低排放是中国钢铁史上的重大绿色革命--解读《关于推进实施钢铁行业超低排放的意见》[J]. 中国钢铁业, 2019,(6):9−19. doi: 10.3969/j.issn.1672-5115.2019.06.003
    [2]
    (姜涛, 范晓慧, 李光辉. 铁矿造块学[M]. 长沙: 中南大学出版社, 2016.)

    Jiang Tao, Fan Xiaohui, Li Guanghui. Iron ore agglomeration[M]. Changsha: Central South University Press, 2016.
    [3]
    Xia Jianfang, Yu Xiangyang, Zhao Xianqiong. Optimization of process parameters based on minimum target of cooling energy consumption of sinter cooler[J]. Journal of Iron and Steel Research, 2016,28(1):13−19. (夏建芳, 喻向阳, 赵先琼. 基于环冷机冷却能耗最小目标的工艺参数优化[J]. 钢铁研究学报, 2016,28(1):13−19.
    [4]
    Feng J X, Liang K L, Sun Z B, et al. Cooling process of iron ore pellets in an annular cooler[J]. Int J Miner Metall Mater, 2011,18:285−291. doi: 10.1007/s12613-011-0435-8
    [5]
    Croft T N, Cross M, Slone A K, et al. CFD analysis of an induration cooler on an iron ore grate-kiln pelletising process[J]. Minerals Engineering, 2009,22(9−10):859−873. doi: 10.1016/j.mineng.2009.03.011
    [6]
    (宋昱. 球团矿在环冷机中冷却过程的数值模拟分析[D]. 唐山: 华北理工大学, 2019.)

    Song Yu. Numerical simulation and analysis of the cooling process of pellets in a circular cooler[D]. Tangshan: North China University of Science and Technology, 2019.
    [7]
    (刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006.)

    Liu Wei, Fan Aiwu, Huang Xiaoming. Theory and application of heat and mass transfer in porous media[M]. Beijing: Science Press, 2006.
    [8]
    Hinkley J, Waters A G, Litster J D. An investigation of pre-ignition air flow in ferrous sintering[J]. International Journal of Mineral Processing, 1994,42(1−2):37−52. doi: 10.1016/0301-7516(94)90019-1
    [9]
    Qi Xia, Dai Fangqin. Gas resistance characteristics of a heat storage packed ball bed[J]. The Chinese Journal of Process Engineering, 2015,15(5):770−773. (祁霞, 戴方钦. 蓄热小球填充床的气体阻力特性[J]. 过程工程学报, 2015,15(5):770−773. doi: 10.12034/j.issn.1009-606X.215237
    [10]
    Jiang Wujun, Ge Xiurun. Application of double energy equation to porous media of ventilated embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(6):1170−1172. (蒋武军, 葛修润. 双能量方程在通风路基多孔介质中的应用[J]. 岩石力学与工程学报, 2006,25(6):1170−1172. doi: 10.3321/j.issn:1000-6915.2006.06.013
    [11]
    Zhang X, Chen Z, Zhang J, et al. Simulation and optimization of waste heat recovery in sinter cooling process[J]. Applied Thermal Engineering, 2013,54(1):7−15. doi: 10.1016/j.applthermaleng.2013.01.017
    [12]
    (赵加佩. 铁矿石烧结过程的数值模拟与试验验证[D]. 杭州: 浙江大学, 2012.)

    Zhao Jiapei. Numerical modelling of the iron ore sintering process and its experimental validation[D]. Hangzhou: Zhejiang University, 2012.
    [13]
    Sadrnezhaad S K, Ferdowsi A, Payab H. Mathematical model for a straight grate iron ore pellet induration process of industrial scale[J]. Computational Materials Ence., 2009,44(2):296−302.
    [14]
    Li Yang, Li Boquan, Zhang Xiliang, et al. Mathematical modeling and numerical simulation of pellet drying process[J]. Sintering and Pelletizing, 2018,43(4):33−39. (李洋, 李伯全, 张西良, 等. 球团干燥过程的数学建模与数值模拟研究[J]. 烧结球团, 2018,43(4):33−39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (554) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return