Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Li Jifan, Sheng Zhuo, Li Kaihua, Sun Haoshan, Zhang Xiaohui, Li Dongqin, Li Liang, Zhou Jie, Chen Xiumin. Numerical simulation of the temperature field in titanium sponge reactor during magnesium thermal production process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 20-27. doi: 10.7513/j.issn.1004-7638.2023.02.003
Citation: Li Jifan, Sheng Zhuo, Li Kaihua, Sun Haoshan, Zhang Xiaohui, Li Dongqin, Li Liang, Zhou Jie, Chen Xiumin. Numerical simulation of the temperature field in titanium sponge reactor during magnesium thermal production process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 20-27. doi: 10.7513/j.issn.1004-7638.2023.02.003

Numerical simulation of the temperature field in titanium sponge reactor during magnesium thermal production process

doi: 10.7513/j.issn.1004-7638.2023.02.003
More Information
  • Received Date: 2023-01-05
  • Publish Date: 2023-04-30
  • Based on the size of 7.5 t “I” type furnace, the physical model of titanium sponge reactor was established to simulate the temperature field. Under the center feeding condition of TiCl4, it is found that the temperature gradient is formed both horizontally and vertically from the inside-out of the reactor. The temperature gradually decreases from the center to the wall, and the temperature of upper Ar zone is obviously lower than the melt temperature in the reaction zone. With the increasing feed rate and time of TiCl4, the maximum and average temperature of the reaction zone increase. As to 7.5 t “I” type furnace, when the feed rate is lower than 280 kg/h, heat generation is lower than heat dissipation in the air-cooling zone, hence reactor need be heated by electric furnace. When the feed rate goes from 200 kg/h to 400 kg/h, the maximum temperature in reaction zone increases from 986.5 ℃ to 1167.4 ℃ in 3 hours. When the reactor wall temperature decreases from 820 ℃ to 750 ℃, the temperature of reaction center decreases about 18 ℃, which means that enlarging the temperature gradient between the wall and the reaction center is conducive to promoting the heat dissipation of the melt in the furnace. By establishing reasonable wall temperature control, feeding and discharging system, hard core can be avoided and product quality can be improved.
  • loading
  • [1]
    Lütjering G , Williams J C. Titanium[M]. New York: Berlin Heidelberg, 2007: 1-12.
    [2]
    Kroll W. The production of ductile titanium[J]. Transaction of the Electrochemical Society, 1940,78:35−47. doi: 10.1149/1.3071290
    [3]
    Sheng Zhuo, Li Kaihua, Li Liang. Inflow process of Fe, Ni, and Cr impurities in Ti sponge during Kroll process[J]. Metallurgical Research & Technology, 2020,117(101):1−7.
    [4]
    Ivan, Fedorovich, Chervonyj, et al. Thermodynamic laws of impurities in the titanium sponge inflow during its production[J]. Acta Mechanica Slovaca, 2011,13(4):40−47.
    [5]
    Li Jiayin, Wu Weiyan. Titanium production using integrated process of Mg reduction with distillation large scale equipment improvement[J]. Titanium Industry Process, 2010,27(4):25−29. (李家荫, 吴卫岩. 镁热还原蒸馏联合法生产海绵钛—大型设备装备水平的改进[J]. 钛工业进展, 2010,27(4):25−29. doi: 10.3969/j.issn.1009-9964.2010.04.007
    [6]
    肖志海, 肖自江, 陈德明, 等. 抑制海绵钛生产用反应器拉伸装置及方法: 中国, CN114231757A[P]. 2022-03-25.

    Xiao Zhihai, Xiao Zijiang, Chen Deming, et al. A device and method for inhibiting stretching of the titanium sponge reactor: China, CN114231757 A[P]. 2022-03-25.
    [7]
    Ding Ziwen. Current situation analysis of titanium sponge production equipment[J]. China Metal Bulletin, 2019,(2):118−120. (丁子文. 海绵钛生产装备现状分析[J]. 中国金属通报, 2019,(2):118−120. doi: 10.3969/j.issn.1672-1667.2019.02.074
    [8]
    Wang W, Wu F, Jin H. Enhancement and performance evaluation for heat transfer of air cooling zone for reduction system of sponge titanium[J]. Heat and Mass Transfer, 2017,53(2):465−473. doi: 10.1007/s00231-016-1836-z
    [9]
    盛卓, 李开华, 马占山, 等. 一种海绵钛生产反应器: 中国, CN113373305B[P]. 2022-06-03.

    Sheng Zhuo, Li Kaihua, Ma Zhanshan, et al. A reactor for titanium sponge production: China, CN113373305B[P]. 2022-06-03.
    [10]
    He Yongdong, Chen Deming, Sun Xiaohan, et al. Simulation of temperature field in a 13 t large-scale titanium sponge reduction reactor[J]. Journal of Special Foundry and Non-ferrous Alloys, 2021,41(8):956−960. (贺永东, 陈德明, 孙小涵, 等. 13 t大型海绵钛反应器内部温度场模拟研究[J]. 特种铸造及有色合金, 2021,41(8):956−960.
    [11]
    Gao Chengtao, Wu Fuzhong, Wang Wenhao, et al. Analysis of temperature field in molten pool for sponge titanium production by magnesiothermic reduction[J]. Nonferrous Metals(Extractive Metallurgy), 2014,(4):22−25. (高成涛, 吴复忠, 王文豪, 等. 镁热法生产海绵钛还原熔池温度场的分析[J]. 有色金属(冶炼部分), 2014,(4):22−25.
    [12]
    Hyun Na Bae, Seon Hyo Kim, Lee Go Gi, et al. Study of thermal behavior in a Kroll reactor for the optimization of Ti sponge production[J]. Materials Science Forum, 2010,654:839−842.
    [13]
    胡小平. 传热传质分析[M]. 长沙: 国防科技大学出版社, 2011.

    Hu Xiaoping. Analysis of mass and heat transfer[M]. Changsha: National University of Defense Technology Press, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (485) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return