Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Pu Xin, Zhu Xuejun, Deng Jun, Zhang Yi, Yang Tao, Wang Jun. Study on preparation of Ti3AlC2 powder using sponge titanium as raw material[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 28-33. doi: 10.7513/j.issn.1004-7638.2023.02.004
Citation: Pu Xin, Zhu Xuejun, Deng Jun, Zhang Yi, Yang Tao, Wang Jun. Study on preparation of Ti3AlC2 powder using sponge titanium as raw material[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 28-33. doi: 10.7513/j.issn.1004-7638.2023.02.004

Study on preparation of Ti3AlC2 powder using sponge titanium as raw material

doi: 10.7513/j.issn.1004-7638.2023.02.004
More Information
  • Received Date: 2022-06-26
  • Publish Date: 2023-04-30
  • Ti3AlC2 powder was synthesized by the pressureless sintering method with a mixture of the low-value titanium sponge, aluminum and carbon at a mixing ratio of 3∶1.2∶1.8. The sintered products at the holding temperature of 1000 ℃ and 1100 ℃ and the influence of different holding times on the experimental results were discussed. At the same time, the molten salt method was used to explore the influence of doping of NaCl or KCl on the purity of Ti3AlC2 prepared by pressureless sintering method. The experimental results show that the products sintered under the condition with argon gas protection show the best purity at 1100 ℃. In the molten salt process, the products sintered under the condition with salt doped still have the best purity at 1100 ℃, and the purity of the products doped with "NaCl" is higher than that of "KCl". Meanwhile, insufficient holding time would lead to excessive impurities of Ti2AlC phase and TiC phase, while too long holding time would also lead to product decomposition. The final experiment determined that the purity of the product with sponge titanium: aluminum∶carbon∶salt in the molar ratio of 3∶1.2∶1.8∶2.5 was the highest when it was heated to 1100 ℃ and kept for 0.5 h in a tubular furnace with argon protection, which could reaching 90%.
  • loading
  • [1]
    Pietzka M A, Schuster J C. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994,15(4):392-400. doi: 10.1007/BF02647559
    [2]
    Tzenov N V, Barsoum M W. Synthesis and characterization of Ti3AlC2[J]. Journal of the American Ceramic Society, 2000,83(4):825-832.
    [3]
    Zhang Heng, Wang Libo, Dai Yahui, et al. Preparation and performances of ternary layered ceramic Ti3AlC2/ultrahigh molecular weight polyethylene composites[J]. Acta Materiae Compositae Sinica, 2017,34(6):1177−1184. (张恒, 王李波, 戴亚辉, 等. 三元层状陶瓷Ti3AlC2/超高分子量聚乙烯复合材料的制备及性能[J]. 复合材料学报, 2017,34(6):1177−1184.
    [4]
    Li Liang, Chen Yuqi, Ma Shibang, et al. Synthesis of Ti3AlC2 and its electrical transmission performance by thermobaric method using TiH2 as Ti source[J]. Journal of Nanyang Normal University, 2020,19(6):24−27. (李良, 陈玉奇, 马世榜, 等. 以TiH2为Ti源热压法合成Ti3AlC2及其电传输性能研究[J]. 南阳师范学院学报, 2020,19(6):24−27. doi: 10.3969/j.issn.1671-6132.2020.06.005
    [5]
    李翀. Ti3AlC2陶瓷材料的SHS/PHIP制备工艺及其性能与应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.

    Li Chong. Ti3AlC2 the preparation process of SHS/PHIP of ceramic materials and its properties and applications[D]. Harbin: Harbin Engineering University, 2007.
    [6]
    Wang Qingsong, Dai Li, Zhao Na, et al. Electrical and mechanical properties of discharge plasma sintering Cu/Ti3AlC2[J]. Foshan Ceramics, 2020,30(1):23−26. (王青松, 代历, 赵娜, 等. 放电等离子烧结Cu/Ti3AlC2的电性能及力学性能[J]. 佛山陶瓷, 2020,30(1):23−26.
    [7]
    刘可. Ti3AlC2复合材料的离子辐照及摩擦磨损性能研究[D]. 合肥: 合肥工业大学, 2008.

    Liu Ke. Study on ionic irradiation and friction and wear properties of Ti3AlC2 composites[D]. Hefei: Hefei University of Technology, 2008.
    [8]
    Yang Zhanxin, Wu Qiong, Qi Guochao, et al. Study on synthesis of high purity Ti3AlC2 materials by pressureless sintering[J]. Journal of Ceramics, 2019,44(12):41-43. (杨占鑫, 吴琼, 齐国超, 等. 无压烧结制备高纯层状Ti3AlC2材料的研究[J]. 陶瓷学报, 2019,44(12):41-43.
    [9]
    Lv Zhenlin, Liu Jingge, Xiao Qiyan, et al. Preparation of Ti3AlC2 ceramics and their friction and wear properties[J]. Journal of the Chinese Ceramic Society, 2012,40(4):503−506. (吕振林, 刘晶歌, 肖琪聃, 等. Ti3AlC2陶瓷的制备及其摩擦磨损性能[J]. 硅酸盐学报, 2012,40(4):503−506.
    [10]
    Peng Hang, Dai Shuai, Ni Jie, et al. Preparation of Ti–Al–C ternary layered ceramics by pressureless sintering[J]. Journal of the Chinese Ceramic Society, 2019,47(9):1301−1305. (彭航, 代帅, 倪杰, 等. 无压烧结制备Ti–Al–C系三元层状陶瓷[J]. 硅酸盐学报, 2019,47(9):1301−1305.
    [11]
    Li Xikun, Cai Ming, Qi Yanyu, et al. Preparation of Ti3AlC2 ceramics by powder metallurgy[J]. Journal of Shenyang Ligong University, 2020,39(1):24−28,34. (李喜坤, 蔡明, 齐艳雨, 等. 粉末冶金法制备Ti3AlC2陶瓷研究[J]. 沈阳理工大学学报, 2020,39(1):24−28,34. doi: 10.3969/j.issn.1003-1251.2020.01.006
    [12]
    Xiao Qiyan, Wu Shan, Sun Jinlei, et al. Study on current-carry friction and wear properties of Ti3AlC2 material[J]. Forging & Stamping Technology, 2015,36(8):1910−1913. (肖琪聃, 吴珊, 孙金磊, 等. Ti3AlC2材料载流摩擦磨损性能的研究[J]. 锻造技术, 2015,36(8):1910−1913.
    [13]
    Zhou Weibing, Mei Bingchu, Zhu Jiaoqun, et al. Fabrication of Ti2AlC/Ti3AlC2 ceramics material by hot pressing[J]. Shandong Ceramics, 2003,26(2):6−9. (周卫兵, 梅炳初, 朱教群, 等. 热压烧结工艺制备Ti2AlC/Ti3AlC2陶瓷材料[J]. 山东陶瓷, 2003,26(2):6−9. doi: 10.3969/j.issn.1005-0639.2003.02.002
    [14]
    Zhao Zhuoling, Feng Xiaoming, Ai Taotao, et al. Preparation and high-temperature oxidation behavior of Ti3AlC2 material[J]. Bulletin of the Chinese Ceramic Society, 2011,30(1):65−68. (赵卓玲, 冯小明, 艾桃桃, 等. Ti3AlC2材料的制备及其高温抗氧化性能研究[J]. 硅酸盐通报, 2011,30(1):65−68.
    [15]
    Wang Xinyu, Wu Lili, Gao Hong, et al. Synthesis of Ti3AlC2 and electrochemical performance of Ti3C2Tx nanosheet electrode[J]. Scientia Sinica(Chimica), 2018,48(3):289−297. (王新宇, 武立立, 高红, 等. Ti3AlC2的制备及Ti3C2Tx薄膜的电化学性能研究[J]. 中国科学:化学, 2018,48(3):289−297.
    [16]
    Han Xin, Wang Mingzhi, Liang Baoyan, et al. Fabrication of Ti3AlC2 by mechanical alloying and heat treatment with Sn Aids[J]. Rare Metal Materials and Engineering, 2010,A01:204−207. (韩欣, 王明智, 梁宝岩, 等. Sn做助剂机械合金化+热处理制备Ti3AlC2[J]. 稀有金属材料与工程, 2010,A01:204−207.
    [17]
    Liu Kexin, Jin Songzhe. Fabrication of Ti3AlC2 mechanical alloying ceramic materials[J]. Journal of Changchun University of Technology, 2012,33(1):106−110. (刘可心, 金松哲. 机械合金化合成Ti3AlC2导电陶瓷[J]. 长春工业大学学报, 2012,33(1):106−110. doi: 10.3969/j.issn.1674-1374-B.2012.01.024
    [18]
    Yang Chen, Jia Shusheng, Jin Songzhe, et al. Research on the fabrication of Ti3AlC2 ceramic materials by mechanical alloying[J]. Rare Metal Materials and Engineering, 2007,36(s3):282−285. (杨晨, 贾树胜, 金松哲, 等. 机械合金化制备Ti3AlC2陶瓷材料的研究[J]. 稀有金属材料工程, 2007,36(s3):282−285.
    [19]
    Qian Xukun. The effect of parameters of pressure-assisted combustion synthesis on preparation of Ti3AlC2 bulk[J]. Journal of Lishui University, 2017,39(2):36−41. (钱旭坤. 压力辅助燃烧合成工艺对制备Ti3AlC2块材的影响[J]. 丽水学院报, 2017,39(2):36−41.
    [20]
    Wang Xiaohui, Zhou Yanchun. Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic[J]. Journal of Materials Chemistry, 2002,12(3):455−460. (王晓辉, 周彦春. 层状可加工Ti3AlC2陶瓷的固液反应合成[J]. 材料化学学报, 2002,12(3):455−460. doi: 10.1039/b108685e
    [21]
    Ai Taotao, Feng Xiaoming, Xu Feng, et al. Fabrication of Ti3AlC2 ceramics by insituhot-pressing technique[J]. Heat Treatment of Metals, 2010,35(12):113−116. (艾桃桃, 冯小明, 徐峰, 等. 原位热压合成Ti3AlC2陶瓷[J]. 金属热处理, 2010,35(12):113−116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (438) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return