| Citation: | Li Jinzhou, Chen Chao, Dang Jie. Electrocatalytic hydrogen production performance of MXene/cobalt phosphide composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 48-54. doi: 10.7513/j.issn.1004-7638.2023.02.007 |
| [1] |
Benck J, Hellstern J, Kibsgaard P, et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catal, 2014,4:3957−3971. doi: 10.1021/cs500923c
|
| [2] |
Cao L M, Zhang J, Ding L W, et al. Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting[J]. J Energy Chem, 2022,68:494−520. doi: 10.1016/j.jechem.2021.12.006
|
| [3] |
Bavykina A, Kolobov N, Khan I S, et al. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives[J]. Chem Rev, 2020,120:8468−8535.
|
| [4] |
Liu T, Li P, Yao N, et al. CoP-doped mof-based electrocatalyst for ph-universal hydrogen evolution reaction[J]. Angew Chem Int Ed, 2019,58:4679−4684.
|
| [5] |
Wang P C, Xu Z A, Lin Y Q, et al. MOF-derived N-doped CoP and Fe-doped CoOOH ultrathin nanosheets electrocatalysts for overall water splitting[J]. ACS Sustain Chem, 2020,8:8949−8957.
|
| [6] |
Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: mxenes: a new family of two-dimensional materials[J]. Adv Mater, 2014,26:992−1005. doi: 10.1002/adma.201304138
|
| [7] |
Li J Z, Chen C, Lv Z P, et al. Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2Tx mxene for enhanced OER[J]. J Mater Sci Technol, 2023,145:74−82. doi: 10.1016/j.jmst.2022.10.048
|
| [8] |
Cai G R, Yan P, Zhang L L, et al. Metal–organic framework-based hierarchically porous materials: synthesis and applications[J]. Chem Rev, 2021,121:12278−12326. doi: 10.1021/acs.chemrev.1c00243
|
| [9] |
Jian K L, Ma W S, Lv Z P, et al. Tuning the electronic structure of the CoP/Ni2P nanostructure by nitrogen doping for an efficient hydrogen evolution reaction in alkaline media[J]. Inorg Chem, 2021,60:18544−18552. doi: 10.1021/acs.inorgchem.1c03145
|
| [10] |
Wang M, Ma W S, Lv Z P, et al. Co-doped Ni3N nanosheets with electron redistribution as bifunctional electrocatalysts for efficient water splitting[J]. J Phys Chem Lett, 2021,12:1581−1587. doi: 10.1021/acs.jpclett.0c03804
|
| [11] |
Lv Z P, Ma W S, Dang J, et al. Induction of Co2P growth on a MXene (Ti3C2Tx)-Modified self-supporting electrode for efficient overall water splitting[J]. J Phys Chem Lett, 2021,12:4841−4848. doi: 10.1021/acs.jpclett.1c01345
|
| [12] |
Zou Z H, Wang J L, Pan H R, et al. Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating[J]. J Mater Chem A, 2020,8:14099−14105. doi: 10.1039/D0TA04025H
|
| [13] |
He Z Q, Rong T D, Li Y, et al. Two-dimensional TiVC solid-solution MXene as surface-enhanced raman scattering substrate[J]. ACS Nano, 2022,16:4072−4083. doi: 10.1021/acsnano.1c09736
|
| [14] |
Lv Z P, Ma W S, Wang M, et al. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media[J]. Adv Funct Mater, 2021,31:2102576. doi: 10.1002/adfm.202102576
|
| [15] |
Zhang C L, Xie Y, Liu J T, et al. 1D core−shell MOFs derived CoP nanoparticles-embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts[J]. Chem Eng J, 2021,419:129977. doi: 10.1016/j.cej.2021.129977
|
| [16] |
Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution[J]. J Electrochem Soc, 2005,152:J23−J26. doi: 10.1149/1.1856988
|