Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Li Jinzhou, Chen Chao, Dang Jie. Electrocatalytic hydrogen production performance of MXene/cobalt phosphide composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 48-54. doi: 10.7513/j.issn.1004-7638.2023.02.007
Citation: Li Jinzhou, Chen Chao, Dang Jie. Electrocatalytic hydrogen production performance of MXene/cobalt phosphide composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 48-54. doi: 10.7513/j.issn.1004-7638.2023.02.007

Electrocatalytic hydrogen production performance of MXene/cobalt phosphide composites

doi: 10.7513/j.issn.1004-7638.2023.02.007
More Information
  • Received Date: 2022-12-31
  • Publish Date: 2023-04-30
  • To address the issues of low electrical conductivity and easy clogging of active sites in conventional electrocatalyst materials, a highly conductive and hydrophilic two-dimensional (2D) titanium vanadium carbide (MXene) is used as the catalyst loading substrate via combining metal organic framework derived cobalt phosphides with high specific surface areas to prepare cathode materials for electrolytic water splitting. The crystal structure, surface morphological characteristics, electronic structure of active sites, and electrochemical properties of the electrode materials are investigated by utilizing the X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), density functional theory calculations (DFT), and electrochemical measurements. The results demonstrate that the carbon and nitrogen components of the organic ligands can effectively tune the electronic structure of the active sites and enhance the adsorption-desorption kinetics; the 2D MXene can further reduce the charge transfer resistance of the electrode materials, the as-obtained catalyst only requires 114 mV overpotential to achieve 10 mA/cm2 current density and exhibits outstanding stability. The research provides a reference for the preparation of high performance non-precious metal catalysts for hydrogen evolution reaction.
  • loading
  • [1]
    Benck J, Hellstern J, Kibsgaard P, et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catal, 2014,4:3957−3971. doi: 10.1021/cs500923c
    [2]
    Cao L M, Zhang J, Ding L W, et al. Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting[J]. J Energy Chem, 2022,68:494−520. doi: 10.1016/j.jechem.2021.12.006
    [3]
    Bavykina A, Kolobov N, Khan I S, et al. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives[J]. Chem Rev, 2020,120:8468−8535.
    [4]
    Liu T, Li P, Yao N, et al. CoP-doped mof-based electrocatalyst for ph-universal hydrogen evolution reaction[J]. Angew Chem Int Ed, 2019,58:4679−4684.
    [5]
    Wang P C, Xu Z A, Lin Y Q, et al. MOF-derived N-doped CoP and Fe-doped CoOOH ultrathin nanosheets electrocatalysts for overall water splitting[J]. ACS Sustain Chem, 2020,8:8949−8957.
    [6]
    Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: mxenes: a new family of two-dimensional materials[J]. Adv Mater, 2014,26:992−1005. doi: 10.1002/adma.201304138
    [7]
    Li J Z, Chen C, Lv Z P, et al. Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2Tx mxene for enhanced OER[J]. J Mater Sci Technol, 2023,145:74−82. doi: 10.1016/j.jmst.2022.10.048
    [8]
    Cai G R, Yan P, Zhang L L, et al. Metal–organic framework-based hierarchically porous materials: synthesis and applications[J]. Chem Rev, 2021,121:12278−12326. doi: 10.1021/acs.chemrev.1c00243
    [9]
    Jian K L, Ma W S, Lv Z P, et al. Tuning the electronic structure of the CoP/Ni2P nanostructure by nitrogen doping for an efficient hydrogen evolution reaction in alkaline media[J]. Inorg Chem, 2021,60:18544−18552. doi: 10.1021/acs.inorgchem.1c03145
    [10]
    Wang M, Ma W S, Lv Z P, et al. Co-doped Ni3N nanosheets with electron redistribution as bifunctional electrocatalysts for efficient water splitting[J]. J Phys Chem Lett, 2021,12:1581−1587. doi: 10.1021/acs.jpclett.0c03804
    [11]
    Lv Z P, Ma W S, Dang J, et al. Induction of Co2P growth on a MXene (Ti3C2Tx)-Modified self-supporting electrode for efficient overall water splitting[J]. J Phys Chem Lett, 2021,12:4841−4848. doi: 10.1021/acs.jpclett.1c01345
    [12]
    Zou Z H, Wang J L, Pan H R, et al. Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating[J]. J Mater Chem A, 2020,8:14099−14105. doi: 10.1039/D0TA04025H
    [13]
    He Z Q, Rong T D, Li Y, et al. Two-dimensional TiVC solid-solution MXene as surface-enhanced raman scattering substrate[J]. ACS Nano, 2022,16:4072−4083. doi: 10.1021/acsnano.1c09736
    [14]
    Lv Z P, Ma W S, Wang M, et al. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media[J]. Adv Funct Mater, 2021,31:2102576. doi: 10.1002/adfm.202102576
    [15]
    Zhang C L, Xie Y, Liu J T, et al. 1D core−shell MOFs derived CoP nanoparticles-embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts[J]. Chem Eng J, 2021,419:129977. doi: 10.1016/j.cej.2021.129977
    [16]
    Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution[J]. J Electrochem Soc, 2005,152:J23−J26. doi: 10.1149/1.1856988
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (767) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return