| Citation: | Yan Meiling, Zuo Chengyang, Li Jiangyan, Cao Zhiqin, Yu Zihan, Zhu Danyu, Pan Xiaoli. Preparation of Zr-doped BaTiO3 dielectric ceramics by solution combustion synthesis and its energy storage performance[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 55-60. doi: 10.7513/j.issn.1004-7638.2023.02.008 |
| [1] |
Wang Ge, Lu Zhilun, Li Yong, et al. Electroceramics for high-energy density capacitors: Current status and future perspectives[J]. Chemical Reviews, 2021,121(10):6124−6172. doi: 10.1021/acs.chemrev.0c01264
|
| [2] |
Letao Yanga, Xi Konga, Fei Li, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Progress in Materials Science, 2019,102:72−108. doi: 10.1016/j.pmatsci.2018.12.005
|
| [3] |
Sun Zixiong , Wang Zhuo , Tian Ye , et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics [J]. Advanced Electronic Materials, 2019: 1900698.
|
| [4] |
Yao Zhonghua, Song Zhe, Hao Hua, et al. Homogeneous/Inhomogeneous-structured dielectrics and their energy-storage performances[J]. Advanced Materials, 2017,29(20):1601727. doi: 10.1002/adma.201601727
|
| [5] |
Haribabu Palneedi, Mahesh Peddigari, Geon-Tae Hwang, et al. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook[J]. Advanced Functional Materials, 2018,28:1803665. doi: 10.1002/adfm.201803665
|
| [6] |
Yuan Qibin, Chen Mi, Zhan Shili, et al. Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges[J]. Chemical Engineering Journal, 2022,446:136315. doi: 10.1016/j.cej.2022.136315
|
| [7] |
Zeng Fanzhou, Cao Minghe, Zhang Lin, et al. Microstructure and dielectric properties of SrTiO3 ceramics by controlled growth of silica shells on SrTiO3 nanoparticles[J]. Ceramics International, 2017,43:7710−7716. doi: 10.1016/j.ceramint.2017.03.073
|
| [8] |
Wang Fenglin, Zhang Weijun, Mao Haijun, et al. Research progress on temperature-stable BaTiO3-based complex perovskite MLCC dielectrics[J]. Materials Reports, 2022,36(1):57−63. (汪丰麟, 张为军, 毛海军, 等. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022,36(1):57−63.
|
| [9] |
Yan Guiwei, Ma Minggang, Li Chengbo, et al. Enhanced energy storage property and dielectric breakdown strength in Li+ doped BaTiO3 ceramics[J]. Journal of Alloys and Compounds, 2021,857:158021. doi: 10.1016/j.jallcom.2020.158021
|
| [10] |
Si Xie, Yang Bai, Fei Han, et al. Distinct effects of Ce doping in A or B sites on the electrocaloric effect of BaTiO3 ceramics[J]. Journal of Alloys and Compounds, 2017,724:163−168. doi: 10.1016/j.jallcom.2017.07.012
|
| [11] |
徐源. 锆钛酸钡陶瓷的制备及改性研究[D]. 汉中: 陕西理工大学, 2019.
Xu Yuan. Preparation and modification of zirconium titanate ceramics[D]. Hanzhong: Shaanxi University of Technology, 2019.
|