| Citation: | Zhang Yuchen, Yao Ximing, Pei Qi, Zhou Changyu, He Xiaohua. Stress intensity factors with the surface cracked plate of commercial pure titanium TA2 under compression[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 67-76. doi: 10.7513/j.issn.1004-7638.2023.02.010 |
| [1] |
An Zhongsheng, Chen Yan, Zhao Wei. Report on China titanium industry in 2021[J]. Iron Steel Vanadium Titanium, 2022,43(4):1−9. (安仲生, 陈岩, 赵巍. 2021年中国钛工业发展报告[J]. 钢铁钒钛, 2022,43(4):1−9.
|
| [2] |
Zhao Qing, Chang Le, Zheng Yixiang, et al. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. Iron Steel Vanadium Titanium, 2022,43(5):81−89. (赵青, 常乐, 郑逸翔, 等. TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型[J]. 钢铁钒钛, 2022,43(5):81−89.
|
| [3] |
Chen Xiangwei, He Xiaohua, Dai Qiao, et al. Failure assessment curve of commercial pure titanium TA2[J]. Rare Metal Materials and Engineering, 2013,42(7):1469−1473. (陈祥伟, 贺小华, 代巧, 等. 工业纯钛TA2失效评定曲线研究[J]. 稀有金属材料与工程, 2013,42(7):1469−1473. doi: 10.3969/j.issn.1002-185X.2013.07.031
|
| [4] |
Qin Xiaofeng, Xie Liyang, He Xuehong, et al. Research on influencing factors of stress intensity factors for double axial surface cracks in thick walled cylinders[J]. Pressure Vessel Technology, 2011,28(12):18−22,53. (秦晓峰, 谢里阳, 何雪浤, 等. 厚壁筒双轴向表面裂纹尖端应力强度因子影响因素的研究[J]. 压力容器, 2011,28(12):18−22,53. doi: 10.3969/j.issn.1001-4837.2011.12.004
|
| [5] |
Raju I S, Newman J C. Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates[J]. Engineering Fracture Mechanics, 1979,11(4):817−829. doi: 10.1016/0013-7944(79)90139-5
|
| [6] |
Newman J C, Raju I S. An empirical stress-intensity factor equation for the surface crack[J]. Engineering Fracture Mechanics, 1981,15(1):185−192.
|
| [7] |
Isida M, Noguchi H, Yoshida T. Tension and bending of finite thickness plates with a semi-elliptical surface crack[J]. International Journal of Fracture, 1984,26(3):157−188. doi: 10.1007/BF01140626
|
| [8] |
Holdbrook S J, Dover W D. The stress intensity factor for a deep surface crack in a finite plate[J]. Engineering Fracture Mechanics, 1979,12(3):347−364. doi: 10.1016/0013-7944(79)90049-3
|
| [9] |
Xie W, Tu S W, Huang Q Q, et al. Investigation on mixed mode stress intensity factors for inclined surface crack in finite-thickness plates and parameters influence[J]. Advanced Materials Research, 2011,217-218:330−335. doi: 10.4028/www.scientific.net/AMR.217-218.330
|
| [10] |
Toribio J, González B, Matos J C, et al. Stress intensity factors for embedded, surface, and corner cracks in finite-thickness plates subjected to tensile loading[J]. Materials, 2021,14(11):2807. doi: 10.3390/ma14112807
|
| [11] |
张俊清. 高速列车空心车轴表面裂纹应力强度因子研究[D]. 北京: 北京交通大学, 2011.
Zhang Junqing. Research on stress intensity factor of surface crack of high-speed train hollow axle[D]. Beijing: Beijing Jiaotong University, 2011.
|
| [12] |
Ayhan A O. Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates[J]. Engineering Fracture Mechanics, 2004,71(7):1059−1079.
|
| [13] |
Ayhan A O. Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements[J]. International Journal of Solids and Structures, 2009,46(3):796−810.
|
| [14] |
Ayhan A O, Yücel U. Stress intensity factor equations for mixed-mode surface and corner cracks in finite-thickness plates subjected to tension loads[J]. International Journal of Pressure Vessels and Piping, 2011,88(5):181−188.
|
| [15] |
Yang Hui, Cao Ping, Jang Xueliang, et al. Analytical and numerical research of stress intensity factor with a closed-crack in finite-rock-plates under biaxial compression[J]. Journal of Central South University(Science and Technology), 2008,(4):850−855. (杨慧, 曹平, 江学良, 等. 双轴压缩下闭合裂纹应力强度因子的解析与数值方法[J]. 中南大学学报(自然科学版), 2008,(4):850−855.
|
| [16] |
Li Nianbin, Dong Shiming, Hua Wen. Analysis of the effect of crack face contact on stress intensity factors for a centrally cracked Brazilian disk[J]. Rock and Soil Mechanics, 2017,38(8):2395−2401. (李念斌, 董世明, 华文. 裂纹面接触对中心裂纹圆盘应力强度因子影响分析[J]. 岩土力学, 2017,38(8):2395−2401. doi: 10.16285/j.rsm.2017.08.029
|
| [17] |
Zhu F J, Liu H Y, Yao L H, et al. Stress field analysis of an infinite plate with a central closed inclined crack under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2021,116:103111. doi: 10.1016/j.tafmec.2021.103111
|
| [18] |
Xu Zhiqian, Liang Yunhao, Yan Yifei, et al. Analysis of hole edge cracking behavior of perforating casing based on fracture mechanics[J]. Pressure Vessel Technology, 2020,37(4):50−56. (许志倩, 梁云浩, 闫怡飞, 等. 基于断裂力学的射孔套管孔边开裂行为分析[J]. 压力容器, 2020,37(4):50−56. doi: 10.3969/j.issn.1001-4837.2020.04.008
|
| [19] |
Jin L Z, Pei Q, Yu C Y, et al. T-stresses solution and out-of-plane constraint for central cracked plate (CCP) with I-II mixed mode crack under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2021,115:103040. doi: 10.1016/j.tafmec.2021.103040
|
| [20] |
Wang Y Z, Miao X T, Zhou C Y, et al. A study of Txx-stress on mixed mode I-II semi-elliptical surface crack in plates[J]. Theoretical and Applied Fracture Mechanics, 2019,103:102305. doi: 10.1016/j.tafmec.2019.102305
|
| [21] |
中华人民共和国国家质量监督检验检疫总局. GB/T 19624-2019. 在用含缺陷压力容器安全评定[S]. 北京: 中国标准出版社, 2019.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 19624-2019. Safety assessment of in-service pressure vessels containing defects[S]. Beijing: Standards Press of China, 2019.
|
| [22] |
Noda N A, Kihara T, Beppu D. Variations of stress intensity factor of a semi-elliptical surface crack subjected to mixed mode loading[J]. International Journal of Fracture, 2004,127(2):167−191. doi: 10.1023/B:FRAC.0000035054.88722.43
|