Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, Yang Zaijiang, Yang Xuexin, Ye Hongchuan, Gao Tian. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011
Citation: Dong Xiaofeng, Wang Guanjun, Zhang Mingyu, Yang Zaijiang, Yang Xuexin, Ye Hongchuan, Gao Tian. Study on high-temperature tensile deformation behavior of TA9 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 77-83. doi: 10.7513/j.issn.1004-7638.2023.02.011

Study on high-temperature tensile deformation behavior of TA9 titanium alloy

doi: 10.7513/j.issn.1004-7638.2023.02.011
More Information
  • Received Date: 2022-09-22
  • Publish Date: 2023-04-30
  • The true stress-true strain curves of TA9 titanium alloy in the temperature range of 800-920 ℃ and the strain rate range of 0.001-0.125 s−1 were obtained by high-temperature tensile test. The relationship among deformation temperature, strain rate, and flow stress under tensile stress is analyzed. The constitutive analysis based on the hyperbolic-sine Arrhenius equation was constructed, and the strain correction was carried out. The hot processing maps of 20% and 50% deformation were drawn, and the microstructure evolution of the alloy under different deformation conditions was studied. The results show that the flow stress decreases with the deformation temperature increase and the strain rate decrease. The constitutive equation calculates the deformation activation energy in the two-phase region to be 569.453 kJ/mol. There are four central regions of instability in the hot processing map. The instability region in the hot processing map mainly has four regions, which are at 800-845 ℃ and 870-920 ℃, and the strain rate is more significant than 0.07 s−1 and 0.002-0.03 s−1, respectively. In addition, the α phase in the microstructure of the fracture position is elongated along the direction of the alloy deformation, and the α grain boundary becomes serrated, which is related to the fragmentation, segmentation, and grain boundary protrusion of α along the subgrain boundary during the dynamic recovery process. The equiaxed α grain size decreases with the increase in strain rate when the deformation temperature is constant. The equiaxed α grain size increases with the increase in temperature when the strain rate is constant.
  • loading
  • [1]
    Ye Yong, Wang Jinyan. An overview on application status and processing technology development of titanium alloy[J]. Materials Reports, 2012,26(20):360−363. (叶勇, 王金彦. 钛合金的应用现状及加工技术发展概况[J]. 材料导报, 2012,26(20):360−363. doi: 10.3969/j.issn.1005-023X.2012.z1.097
    [2]
    Li Yi, Zhao Yongqing, Zeng Weidong, et al. Application and development of aerial titanium alloys[J]. Materials Reports, 2020,34(z1):280−282. (李毅, 赵永庆, 曾卫东, 等. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(z1):280−282.
    [3]
    Zhang Haiyang, Shi Jinliang, Zhang Xuhu, et al. Near-net-shaping hot isostatic pressing of complicated titanium alloy air inlet[J]. Journal of Propulsion Technology, 2022,43(8):383−389. (张海洋, 史金靓, 张绪虎, 等. 复杂钛合金进气道热等静压近净成形技术研究[J]. 推进技术, 2022,43(8):383−389. doi: 10.13675/j.cnki.tjjs.200967
    [4]
    Chai Xiyang, Gao Zhiyu, Pan Tao, et al. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation[J]. Chinese Journal of Engineering, 2018,40(2):226−232. (柴希阳, 高志玉, 潘涛, 等. 工业纯钛TA2 热变形过程的流变行为本构方程[J]. 工程科学学报, 2018,40(2):226−232.
    [5]
    Xu Meng, Jia Weiju, Zhang Zhihao, et al. Hot compression deformation behavior and processing map of TA15 alloy.[J]. Rare Metal Materials and Engineering, 2017,46,(9):2708. (徐猛, 贾蔚菊, 张志豪. TA15 钛合金高温热压缩变形行为及热加工图[J]. 稀有金属材料与工程, 2017,46,(9):2708.
    [6]
    夏麒帆, 梁益龙, 杨春林, 等, TC4 钛合金拉伸变形行为的研究[J]. 稀有金属, 2019, 43(7): 765.

    Xia Qifan, Liang Yilong, Yang Chunlin, et al. Tensile deformation behavior of TC4 titanium alloy[J]. Chinese Journal of Rare Metals, 2019, 43(7): 765.
    [7]
    Wu Jingyi. Hot compression deformation behaviors and processing map of new-type Ti-V-Mo based alloy[J]. Rare Metal Materials and Engineering, 2021,50(6):2061−2068. (吴静怡. 新型Ti-V-Mo系钛合金热变形行为及热加工图研究[J]. 稀有金属材料与工程, 2021,50(6):2061−2068.
    [8]
    Zheng Baoxing, Deng Xiaohu, Wu Chuan. Establishment of constitutive equation and dynamic recrystallization model for Ti55531 titanium alloy[J]. Journal of Plasticity Engineering, 2021,28(9):161−169. (郑宝星, 邓小虎, 武川. Ti55531钛合金本构方程及动态再结晶模型建立[J]. 塑性工程学报, 2021,28(9):161−169. doi: 10.3969/j.issn.1007-2012.2021.09.021
    [9]
    Wu Chuan, Liu Bin, Zhou Yujie, et al. Investigation on hot deformation behavior and microstructural evolution of Ti6554 titanium alloy[J]. Journal of Netshape Forming Engineering, 2022,14(1):114−124. (武川, 刘斌, 周宇杰. Ti6554 钛合金高温变形行为与微观组织演化机制研究[J]. 精密成形工程, 2022,14(1):114−124. doi: 10.3969/j.issn.1674-6457.2022.01.014
    [10]
    Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966,14(9):11.
    [11]
    刘全坤. 材料成形基本原理[M]. 北京: 机械工业出版社, 2010: 214-235.

    Liu Quankun . Principles of material forming[M]. Beijing: China Machine Press, 2010: 214-235.
    [12]
    Zhang Mingyu, Yun Xinbing, Fu Hongwang. Effect of different heat treatment processes on microstructure and properties of TC10 titanium alloy[J]. Journal of Plasticity Engineering, 2021,28(12):237. (张明玉, 运新兵, 伏洪旺. 不同热处理工艺对TC10钛合金组织及性能的影响[J]. 塑性工程学报, 2021,28(12):237. doi: 10.3969/j.issn.1007-2012.2021.12.030
    [13]
    Peng Jiahao, Sun Qianjiang, Zhou Jianwei, et al. High temperature thermal deformation and processing of TC4-DT titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2022,32(4):994. (彭嘉豪, 孙前江, 周建伟, 等. TC4-DT钛合金高温热变形及加工[J]. 中国有色金属学报, 2022,32(4):994.
    [14]
    Liu Dong, Luo Zijian. The constitutive relationship for GH169 alloy as afunction of Zener-Hollomon parameter[J]. Journal of Plasticity Engineering, 1995,2(1):15. (刘东, 罗子健. 以Zener-Hollomon参数表示的GH169合金的本构关系[J]. 塑性工程学报, 1995,2(1):15.
    [15]
    Prasad Y V R K, GegeL H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883−1892. doi: 10.1007/BF02664902
    [16]
    Zhou Lin, Liu Yunxi, Chen Wei, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals, 2020,46(1):27. (周琳, 刘运玺, 陈玮, 等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属, 2020,46(1):27.
    [17]
    Wang Liying, Yang You, Liu Chunlan, et al. Rheological behavior and microstructure evolution on Ti-6Al-4V titanium alloy by hot machining[J]. Forging & Stamping Technology, 2020,45(12):183. (王立颖, 杨友, 刘春兰, 等. 热机械加工Ti-6Al-4V钛合金的流变行为和显微组织演变[J]. 锻压技术, 2020,45(12):183.
    [18]
    郑志莹. Ti-5Al-5Mo-5V-3Cr-1Fe亚稳β钛合金热变形行为及组织演变机理研究[D]. 重庆: 重庆理工大学, 2021.

    Zheng Zhiying. Study on hot deformation behavior and microstructure evolution mechanism of Ti-5Al-5Mo-5V-3Cr-1Fe metastable β titanium alloy[D]. Chongqing: Chongqing University of Technology, 2021.
    [19]
    Zhao Qinyang, Chen Yongnan, Xu Yiku, et al. Dynamic recrystallization mechanism of as-cast metastable β titanium alloy during high-strain-rate deformation[J]. The Chinese Journal of Nonferrous Metals, 2022,32(5):1310−1319. (赵秦阳, 陈永楠, 徐义库, 等. 铸态亚稳β钛合金高应变速率动态再结晶机理[J]. 中国有色金属学报, 2022,32(5):1310−1319.
    [20]
    尚筱迪. 工业纯钛TA2热压缩变形行为及微观组织演变[D]. 西安: 西安建筑科技大学, 2019.

    Shang Xiaodi. Hot deformation behavior and microstructure evolution of TA2[D]. Xi’an: Xi’an University of Architecture and Technology, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (428) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return