| Citation: | Dong Liqing, Jiang Yong, Wang Guomin, Wang Zongyi. Study on preparation of super sulfate cement by titanium slag and phosphogypsum[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 124-131. doi: 10.7513/j.issn.1004-7638.2023.02.018 |
| [1] |
Liu Shuhua, Wang Lu, Yu Baoying. Review on hydration mechanism and engineering application of supersulfate cement[J]. China Concrete, 2018,(10):46−51. (刘数华, 王露, 余保英. 超硫酸盐水泥的水化机理及工程应用综述[J]. 混凝土世界, 2018,(10):46−51. doi: 10.3969/j.issn.1674-7011.2018.10.008
|
| [2] |
Dvorkin L, Nihaeva L. Modified supersulfated cements[J]. Zaštita Materijala, 2021,62(4):340−348. doi: 10.5937/zasmat2104340D
|
| [3] |
Wang Liang, Zhou Yang, Peng Zechuan, et al. Study on the strength and carbonation resistance of desulfurized gypsum-based supersulfate cement concrete[J]. China Concrete and Cement Products, 2022,(3):85−90. (王亮, 周扬, 彭泽川, 等. 脱硫石膏基超硫酸盐水泥混凝土强度和抗碳化性能研究[J]. 混凝土与水泥制品, 2022,(3):85−90.
|
| [4] |
Wu Q, Xue Q, Yu Z. Research status of super sulfate cement[J]. Journal of Cleaner Production, 2021,294:126228. doi: 10.1016/j.jclepro.2021.126228
|
| [5] |
Chen Yu, Ji Junrong, Zhou Zhou, et al. Influencing factors and enhancement methods of early strength of supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2021,40(5):1413−1419. (陈宇, 季军荣, 周洲, 等. 超硫酸盐水泥早期强度影响因素及提高途径[J]. 硅酸盐通报, 2021,40(5):1413−1419. doi: 10.16552/j.cnki.issn1001-1625.2021.05.001
|
| [6] |
Chen Yitao, Ge Xuexiang, Li Jie, et al. Preparation and mechanical properties of concrete of titanium gypsum persulfate cement & coal gangue[J]. Journal of Anhui University of Technology(Natural Science), 2021,38(4):373−378. (陈儀涛, 葛雪祥, 李杰, 等. 钛石膏基过硫酸盐水泥煤矸石混凝土的制备及力学性能[J]. 安徽工业大学学报(自然科学版), 2021,38(4):373−378.
|
| [7] |
Gao Y X, Xiang J Y, Wang J, et al. Study on mechanical properties of microbead modified super sulfate cement concrete[C]//The 10th International Symposium on High Performance Concrete-Innovation & Utilization. Beijing: Trans Tech Publications Ltd, 2014.
|
| [8] |
Nguyen H A, Chang T P, Chen C T, et al. Engineering and creep performances of green super-sulfated cement concretes using circulating fluidized bed combustion fly ash[J]. Construction and Building Materials, 2022,346:128274. doi: 10.1016/j.conbuildmat.2022.128274
|
| [9] |
Yu B Y, Wang J, Gao Y X, et al. Studies on key technology and toughness of super sulfate cement-based compound materials[J]. Applied Mechanics and Materials, 2014,665:151−154. doi: 10.4028/www.scientific.net/AMM.665.151
|
| [10] |
Wu Shuanglei, Ji Junrong, Zhou Weijie, et al. Effect and mechanism of sodium lactate on strength of supersulfate cement[J]. Bulletin of the Chinese Ceramic Society, 2022,41(9):3008−3015. (武双磊, 季军荣, 周威杰, 等. 乳酸钠对超硫酸盐水泥强度的影响及作用机理[J]. 硅酸盐通报, 2022,41(9):3008−3015. doi: 10.3969/j.issn.1001-1625.2022.9.gsytb202209004
|
| [11] |
Du Huihui, Ni Wen, Gao Guangjun, et al. Research on application of vanadium-titanium slag in fabricated precast concrete slab[J]. New Building Materials, 2021,48(10):172−177. (杜惠惠, 倪文, 高广军, 等. 钒钛矿渣在装配式预制板材中的应用研究[J]. 新型建筑材料, 2021,48(10):172−177. doi: 10.3969/j.issn.1001-702X.2021.10.037
|
| [12] |
Wang Shuai, Lv Shuzhen, Zhao Jie, et al. Preparation of mineral admixture for concrete with high titanium slag[J]. Journal of Southwest University of Science and Technology, 2021,36(1):28−34. (王帅, 吕淑珍, 赵杰, 等. 高钛矿渣制备混凝土用矿物掺合料研究[J]. 西南科技大学学报, 2021,36(1):28−34. doi: 10.3969/j.issn.1671-8755.2021.01.005
|
| [13] |
Liu Shuxian, Su Yan, Yang Min, et al. Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J]. Metal Mine, 2022,(11):252−258. (刘淑贤, 苏严, 杨敏, 等. 钢渣-矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J]. 金属矿山, 2022,(11):252−258.
|
| [14] |
Zhou Miaoqin. Tao Xue. Liao Xun, et al. Production and discharge of phosphogypsum and research progress on its resource utilization[J]. Yunnan Chemical Technology, 2022,49(12):4−8. (周妙琴, 陶雪, 廖迅, 等. 磷石膏产排情况及资源化利用研究进展[J]. 云南化工, 2022,49(12):4−8. doi: 10.3969/j.issn.1004-275X.2022.12.02
|
| [15] |
Rutherford P M, Dudas M J, Samek R A. Environmental impacts of phosphogypsum[J]. Science of the Total Environment, 1994,149(1-2):1−38. doi: 10.1016/0048-9697(94)90002-7
|
| [16] |
Chernysh Y, Yakhnenko O, Chubur V, et al. Phosphogypsum recycling: a review of environmental issues, current trends, and prospects[J]. Applied Sciences, 2021,11(4):1575. doi: 10.3390/app11041575
|
| [17] |
Jiang Yong, Li Liangjing, Li Wei, et al. Properties of calcined phosphogypsum composite modified cementitious materials[J]. Sichuan Building Materials, 2021,47(6):1−3. (蒋勇, 李靓婧, 李伟, 等. 煅烧磷石膏复合改性胶凝材料的性能[J]. 四川建材, 2021,47(6):1−3. doi: 10.3969/j.issn.1672-4011.2021.06.001
|
| [18] |
Wu Lei, Zhao Zhiman, Zhu Weimin, et al. Effect of chopped basalt fiber on the bending strength of phosphogypsum[J]. Non-Metallic Mines, 2017,40(6):9−11. (吴磊, 赵志曼, 朱伟民, 等. 短切玄武岩纤维对磷石膏抗折强度影响研究[J]. 非金属矿, 2017,40(6):9−11. doi: 10.3969/j.issn.1000-8098.2017.06.003
|
| [19] |
Li Nianhua, Liu Yuankun, Cui Zhenghao, et al. Properties and applications of basalt fibers[J]. Synthetic Fiber in China, 2022,51(12):16−23. (李年华, 刘元坤, 崔正浩, 等. 玄武岩纤维的性能及其应用[J]. 合成纤维, 2022,51(12):16−23.
|
| [20] |
Victor C Li. Engineered cementitious composites (ECC)[M]. Springer, 2019: 43-44.
|
| [21] |
Curosu I, Mechtcherine V, Forni D, et al. Performance of various strain hardening cement-based composites (SHCC) subject to uniaxial impact tensile loading[J]. Cement and Concrete Reseach, 2017,(102):16−28.
|
| [22] |
陈鹏飞. 玄武岩纤维和聚丙烯纤维混凝土抗冲击性能研究与数值分析[D]. 青岛: 青岛理工大学, 2021.
Chen Pengfei. Research and numerical analysis on impact resistance of basalt fiber and polypropylene fiber reinforced concrete[D]. Qingdao: Qingdao University of Technology, 2021.
|