Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Zhang Pan, Shi Pengzhao, Xie Shizheng, Liang Liang, Xu Lijun, Wang Minglin. Solidification process simulation and process optimization of high strength steel slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 132-140. doi: 10.7513/j.issn.1004-7638.2023.02.019
Citation: Zhang Pan, Shi Pengzhao, Xie Shizheng, Liang Liang, Xu Lijun, Wang Minglin. Solidification process simulation and process optimization of high strength steel slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 132-140. doi: 10.7513/j.issn.1004-7638.2023.02.019

Solidification process simulation and process optimization of high strength steel slab

doi: 10.7513/j.issn.1004-7638.2023.02.019
More Information
  • Received Date: 2022-05-23
  • Publish Date: 2023-04-30
  • Using solidification parameters and surface temperature measurements as boundary conditions, ProCAST software was applied to simulate the heat transfer and solidification process of 960QT steel slab during continuous casting. The effects of casting speed and superheat on the temperature fields of slab and liquid core length at the outlet of the copper mold were analyzed. It is concluded that under the conditions of the casting speed of 0.9 m/min and superheat of 23 ℃, the solidification end point is 18.43 m away from the meniscus. When the casting temperature is 1535 ℃, the position of solidification end moves forward about 2.7 m when the casting speed increases by 0.1 m/min. When the pulling speed is 0.9 m/min, the position of the solidification end moves back about 0.4 m with every 10 ℃ increase of superheat. In addition, the reduction position and amount of the soft reduction system were optimized, from 3 segments to 2 segments, and the reduction of sections 6 and 7 was changed to 2.0 and 2.5 mm respectively. After the process optimization, the central segregation and central porosity of slab were significantly improved, and the carbon segregation index at the slab center decreased from 1.85 to 1.09.
  • loading
  • [1]
    Mu P, Nadot Y, Nadot-Martin C, et al. Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6[J]. International Journal of Fatigue, 2014,63:97−109. doi: 10.1016/j.ijfatigue.2014.01.011
    [2]
    Pascon F, Habraken A M. Finite element study of the effect of some local defects on the risk of transverse cracking incontinuous casting of steel slabs[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(21-24):2285−2299. doi: 10.1016/j.cma.2006.07.017
    [3]
    Petr Haušild, Clotilde Berdin, Philippe Bompard, et al. Ductile fracture of duplex stainless steel with casting defects[J]. International Journal of Pressure Vessels and Piping, 2001,78(9):607−616. doi: 10.1016/S0308-0161(01)00069-2
    [4]
    Cenanovic M B, Maureira H A, Ng M K C, et al. Electromagnetic technology for continuous casting in the steel industry[J]. Direct Rolling and Hot Charging of Strand Cast Billets, 1989:139−148.
    [5]
    Guo Liangliang, Tian Yong, Yao Man, et al. Temperature distribution and dynamic control of secondary cooling in slab continuous casting[J]. International Journal of Minerals, Metallurgy and Materials, 2009,16(6):626−631.
    [6]
    Chen Yong, Xiao Mingfu, Wu Guorong. Dynamic soft reduction technology for bloom casting[J]. Journal of Iron and Steel Research, International, 2010,17(6):1−5. doi: 10.1016/S1006-706X(10)60104-5
    [7]
    蔡开科. 浇注与凝固[M]. 北京: 冶金工业出版社, 1987: 83-106.

    Cai Kaike. Pouring and solidification[M]. Beijing: Metallurgical Industry Press, 1987: 83-106.
    [8]
    Li Jinghong, Jia Hongming, Li Xiaowei, et al. Determination of solidified shell thinkness of continuous casting slab at Angang[J]. Steelmaking, 2008,24(6):17−18,21. (李惊鸿, 贾洪明, 李晓伟, 等. 鞍钢厚板坯凝固坯壳厚度的测定[J]. 炼钢, 2008,24(6):17−18,21.
    [9]
    Li Pengfei, Wang Minglin, Zhang Zhenxue, et al. Reaserch on measurement of Q550D steel solidified slab shell thickness[J]. Hot Working Technology, 2019,48(1):98−102. (李鹏飞, 王明林, 张振学, 等. Q550D凝固坯壳厚度测定研究[J]. 热加工工艺, 2019,48(1):98−102.
    [10]
    Ruan Xibao, Tian Yushi, Xu Lijun, et al. Effect of continuous casting technological parameters on solidification end point of slab[J]. Continuous Casting, 2016,41(5):5−10. (阮细保, 田玉石, 徐李军, 等. 连铸工艺参数对板坯凝固终点的影响[J]. 连铸, 2016,41(5):5−10. doi: 10.13228/j.boyuan.issn1005-4006.20160073
    [11]
    Xie Guiqiang, Xu Lijun, Zou Jinzhong, et al. Application of nail-shooting technique in forecasting model of slab solidification end point[J]. China Metallurgy, 2016,26(3):42−46. (谢桂强, 徐李军, 邹锦忠, 等. 射钉法在铸坯凝固终点预报模型中的应用[J]. 中国冶金, 2016,26(3):42−46. doi: 10.13228/j.boyuan.issn1006-9356.20150142
    [12]
    Xu Lijun, Qiu Shengtao, Zhang Xingzhong. Solidification parameters measurement and soft reduction process optimization of slab[J]. Continuous Casting, 2014,(4):1−8. (徐李军, 仇圣桃, 张兴中. 板坯凝固参数测定及轻压下工艺优化[J]. 连铸, 2014,(4):1−8. doi: 10.13228/j.boyuan.issn1005-4006.2014.04.001
    [13]
    李杰. 连铸坯凝固组织的模拟[D]. 沈阳: 东北大学, 2010.

    Li Jie. Simulation of solidification structure in continuous casting billet[D]. Shenyang: Northeastern University, 2010.
    [14]
    Savage J, Pritchard W H. The problem of rupture of the billet in the continuous casting of steel[J]. Iron Steel Inst. , London, 1954,178(3):269−277.
    [15]
    黄燕. 立式半连铸特厚板坯凝固过程的模拟分析[D]. 武汉: 武汉科技大学, 2014.

    Huang Yan. Modeling of solidification process of extra thick plate slab in vertical semi-continuous casting[D]. Wuhan: Wuhan University of Science and Technology, 2014.
    [16]
    曹广畴. 现代板胚连铸[M]. 北京: 冶金工业出版社, 1994.

    Cao Guangchou. Modern slab continuous casting[M]. Beijing: Metallurgical Industry Press, 1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (492) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return