Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Li Yanqi, Gan Xiaolong, Liu Yajun, Wang Cheng, Zhang Zhuoyu. Study on microstructure transformation behavior of Ti-Nb microalloyed high-speed guardrail steel under continuous cooling[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 153-159. doi: 10.7513/j.issn.1004-7638.2023.02.022
Citation: Li Yanqi, Gan Xiaolong, Liu Yajun, Wang Cheng, Zhang Zhuoyu. Study on microstructure transformation behavior of Ti-Nb microalloyed high-speed guardrail steel under continuous cooling[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 153-159. doi: 10.7513/j.issn.1004-7638.2023.02.022

Study on microstructure transformation behavior of Ti-Nb microalloyed high-speed guardrail steel under continuous cooling

doi: 10.7513/j.issn.1004-7638.2023.02.022
More Information
  • Received Date: 2022-07-01
  • Publish Date: 2023-04-30
  • The thermal simulation testing machine, OM, TEM and other experimental equipment were used to study the continuous cooling transformation behavior of Ti-Nb microalloyed high-speed guardrail steel in the experiment. The results show that when the cooling rate is 0.5 ℃/s, the austenite of the test steel emerges ferrite-pearlite phase transformation. When the cooling rate is greater than 1 ℃/s, the bainite phase transformation begins to occur. At the cooling rate of 10~20 ℃/s, both ferrite-bainite phase transformation and martensite phase transformation come out. While the bainite-martensite phase transformation appears when the cooling rate rises to 30 ℃/s. As the cooling rate increases, the hardness of the test steel also improves. There exists (Ti, Nb) dispersed precipitates in the steel at different cooling rates. In the condition of low cooling rate, the volume fraction of the precipitates in the steel is larger, and the size is smaller, which has a certain precipitation strengthening effect.
  • loading
  • [1]
    Shi Zhongran, Chai Xiyang, Chai Feng, et al. The mechanism of intragranular ferrite formed on Ti-rich(Ti, V) (C, N) precipitates in the coarse heat affected zone of a V-N-Ti microalloyed steel[J]. Materials Letters, 2016,175(14):266−270.
    [2]
    Xu Yang, Zhang Weina, Sun Mingxue, et al. The blocking effects of interphase precipitation on dislocations’ movement in Nb/Ti micro-alloyed steels[J]. Materials Letters, 2015,139(15):177−181.
    [3]
    Chen Jun, Lv Mengyang, Tang Shuai, et al. Microstructure, mechanical proper-ties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014,50:524−530. (陈俊, 吕梦阳, 唐帅, 等. V-Ti 微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014,50:524−530.
    [4]
    Phaniraj M P, Shin Youngmin, Lee Joonho, et al. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides[J]. Mater. Sci. Eng., 2015,A633:1−8.
    [5]
    Li Xiaolin, Wang Zhaodong. Interphase precipitation behaviors of nanometer-sized carbides in a Nb-Ti-bearing low- carbon microalloyed steel[J]. Acta Metall. Sin., 2015,51:417−424. (李小琳, 王昭东. 含 Nb-Ti 低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015,51:417−424.
    [6]
    Zhang Ke, Li Zhaodong, Sui Fengli, et al. Effect of cooling rate on the tissue transformation and mechanical properties of Ti-V-Mo composite microalloyed steel[J]. Acta Metall. Sin., 2018,54(1):31−38. (张可, 李昭东, 隋凤利, 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018,54(1):31−38.
    [7]
    Gan Xiaolong, Han Bin, Tan Wen, et al. Continuous cooling transition curves of Ti-Nb composite microalloyed high-strength steel[J]. Thermal Processing Technology, 2015,44(24):79−81. (甘晓龙, 韩斌, 谭文, 等. Ti-Nb复合微合金化高强钢连续冷却转变曲线[J]. 热加工工艺, 2015,44(24):79−81.
    [8]
    Mecozzi M G, Sietsma J, Van Der Zwaag S. Analysis of γ→α transformation in a Nb micro-alloyed C-Mn steel by phase field modeling[J]. Acta Mater, 2006,54:1431−1440. doi: 10.1016/j.actamat.2005.11.014
    [9]
    Yang Gengwei, Mao Xinping, Zhao Gang, et al. Organizational properties and strengthening mechanism of Ti microalloyed high-strength hot-rolled strip steel[J]. Journal of Iron and Steel Research, 2016,28(12):75−80. (杨庚蔚, 毛新平, 赵刚, 等. Ti微合金化高强度热轧带钢组织性能及强化机理[J]. 钢铁研究学报, 2016,28(12):75−80.
    [10]
    Song Siying, Tian Junyu, Fan Lei, et al. Dynamic and static CCT curves of Q460 for high performance building[J]. Journal of Wuhan University of Science and Technology, 2021,44(6):406−414. (宋思颖, 田俊羽, 樊雷, 等. 高性能建筑结构用钢Q460的动态和静态CCT曲线研究[J]. 武汉科技大学学报, 2021,44(6):406−414.
    [11]
    He Xianling, Yang Gengwei, Mao Xinping, et al. Influence of Nb on the phase transformation pattern and tissue properties of Ti-Mo microalloyed steel by continuous cooling[J]. Acta Metall. Sin., 2017,53(6):648−656. (何仙灵, 杨庚蔚, 毛新平, 等. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017,53(6):648−656.
    [12]
    雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 27.

    Yong Qilong. The second phase in steel materials [M]. Beijing: Metallurgical Industry Press, 2006: 27.
    [13]
    Misra R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel[J]. Materials Science and Engineering A, 2005,394:339−352. doi: 10.1016/j.msea.2004.11.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (421) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return