Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Guan Jianhui, Qu Jinbo, Ding Meiliang. Effect of coiling temperature on the microstructure and mechanical properties of a Ti-Nb microalloyed steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 160-166. doi: 10.7513/j.issn.1004-7638.2023.02.023
Citation: Guan Jianhui, Qu Jinbo, Ding Meiliang. Effect of coiling temperature on the microstructure and mechanical properties of a Ti-Nb microalloyed steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 160-166. doi: 10.7513/j.issn.1004-7638.2023.02.023

Effect of coiling temperature on the microstructure and mechanical properties of a Ti-Nb microalloyed steel

doi: 10.7513/j.issn.1004-7638.2023.02.023
More Information
  • Received Date: 2022-06-15
  • Publish Date: 2023-04-30
  • The effect of coiling temperature on the microstructure and mechanical property of a Ti-Nb microalloyed steel was studied by simulated hot rolling and coiling tests conducted on a pilot hot rolling mill and heat treatment furnace. The results show that the phase transformation process of steel gradually changes from diffusion-type phase transformation to shear-type phase transformation, and the microstructure changes from equiaxed ferritic grain to polygonal ferrite, granular bainite, and lath bainite with the coiling temperature decreases. In addition, the strength first decreases and then increases, while the elongation decreases due to precipitation strengthening and phase transformation strengthening. The strength of the steel at the coiling state is higher than that of the steel after air-cooled due to the precipitation and strengthening of micro-alloy carbonitride during the coiling. With the decrease in coiling temperature, the strength increment of steel at the coiling state gradually decreases compared with the steel after air-cooled. The yield strength is 744~754 MPa, and the elongation is 19%~20.9%, which can obtain good comprehensive properties when the coiling temperature of Ti-Nb microalloyed steel is set at 560~630 ℃.
  • loading
  • [1]
    Yang Hongbo, Wang Hao, Zhao Xu, et al. Research progress on nano-scale interphase precipitation behavior of microalloyed high-strength steel[J]. Iron and Steel, 2021,56(12):10−21. (杨洪波, 王豪, 赵旭, 等. 微合金高强钢纳米相间析出行为研究进展[J]. 钢铁, 2021,56(12):10−21. doi: 10.13228/j.boyuan.issn0449-749x.20210124
    [2]
    Jiang Rong. Microstructure and mechanical properties of micro-alloyed steel with V, Nb, and Ti[J]. Journal of Wuhan University of Technology, 2009,(9):13−15. (蒋蓉. 含V, Nb, Ti微合金钢的微观结构及力学性能[J]. 武汉理工大学学报, 2009,(9):13−15. doi: 10.3963/j.issn.1671-4431.2009.09.004
    [3]
    Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999,15(1):30−36. doi: 10.1179/026708399773002782
    [4]
    Li Fan, Ge Zhangqi, Xing Jun, et al. Effect of prior austenite grain size on critical strain of dynamic recrystallization of hot rolled low carbon microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2021,42(11):51−58. (李凡, 葛章琦, 邢军, 等. 奥氏体晶粒尺寸对热轧低碳微合金钢动态再结晶临界应变的影响[J]. 材料热处理学报, 2021,42(11):51−58. doi: 10.13289/j.issn.1009-6264.2021-0227
    [5]
    Hui Yajun, Pan Hui, Li Wenyuan, et al. Study on the heating schedule of 1 000 MPa grade Nb-Ti microallyed ultra-high strength steel[J]. Actametalica Sinica, 2017,(2):3−13. (惠亚军, 潘辉, 李文远, 等. 1 000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017,(2):3−13.
    [6]
    Ding Zhimin, Fang Jianfei, Liang Bo, et al. Kinetics of austenite grain growth of V-Nb-(Ti) microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013,34:88−91. (丁志敏, 方建飞, 梁博, 等. V-Nb-(Ti)微合金化钢奥氏体晶粒长大的动力学[J]. 材料热处理学报, 2013,34:88−91.
    [7]
    雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 145-147.

    Yong Qilong. Secondary phases in steels[M]. Beijing: Metallurgical Industry Press, 2006: 145-147.
    [8]
    Liang Wen, Wu Run, Hu Jun, et al. Effect of heating process on Nb-Ti micro-alloyed high strength steel[J]. Journal of Central South University(Science and Technology), 2019,(9):2063−2073. (梁文, 吴润, 胡俊, 等. 加热工艺对Nb-Ti微合金化高强钢的影响[J]. 中南大学学报:自然科学版, 2019,(9):2063−2073.
    [9]
    Wu Xinlang, Zhao Zhenzhi, Tian Yun, et al. Phase transformation and second-phase precipitation behavior of Nb-Ti microalloyed steel during cooling after deformation[J]. Iron Steel Vanadium Titanium, 2008,29(1):66−70. (吴新朗, 赵征志, 田允, 等. Nb-Ti微合金钢热变形后组织演变及第二相粒子析出行为[J]. 钢铁钒钛, 2008,29(1):66−70. doi: 10.7513/j.issn.1004-7638.2008.01.013
    [10]
    Zhang Hesong, Kang Yonglin, Tang Xingchang. Nano-precipitates in Nb-Ti microalloy X100 pipeline steel[J]. Transactions of Materials and Heat Treatment, 2015,36(11):138−143. (张鹤松, 康永林, 唐兴昌. Nb-Ti微合金化X100管线钢中的纳米析出规律[J]. 材料热处理学报, 2015,36(11):138−143. doi: 10.13289/j.issn.1009-6264.2015.11.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (510) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return