Volume 44 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Wang Dafeng, Zhang Guanghe, Hu Quanda, Ren Zheng, Jiang Tong. Effect of welding process on welding deformation of automobile control arm[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 173-178. doi: 10.7513/j.issn.1004-7638.2023.02.025
Citation: Wang Dafeng, Zhang Guanghe, Hu Quanda, Ren Zheng, Jiang Tong. Effect of welding process on welding deformation of automobile control arm[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 173-178. doi: 10.7513/j.issn.1004-7638.2023.02.025

Effect of welding process on welding deformation of automobile control arm

doi: 10.7513/j.issn.1004-7638.2023.02.025
More Information
  • Received Date: 2022-11-08
  • Publish Date: 2023-04-30
  • Taking the control arm welding component of automobile parts factory as the research object, a SYSWELD software is used to optimize the welding heat input and welding sequence of control arm components. The results show that when the welding heat input is too low (2015~2266 J/cm), incomplete penetration will occur at the root of the fillet weld between the upper and lower pieces of the control arm. When the welding heat input is moderate (2527~2701 J/cm), the fillet weld can obtain better weld penetration width and penetration depth. In addition, by comparing and analyzing residual stress and deformation atcontrol arm under different welding sequences, it is found out that the welding sequence from the middle to the two sides (①④③⑤⑥②⑦⑧) is conducive to reducing peak residual stress of control arm as a whole. When other welding sequences are used, the peak residual stress and residual deformation of control arm are high. The comparison between the experimental and simulation results indicates that the accuracy of the simulation results is high. The finite element simulation can be used to optimize the welding process of the automobile control arm and improve the welding quality of the control arm products.
  • loading
  • [1]
    蒋荣超. 轿车悬架零部件性能匹配与轻量化多目标优化方法研究[D]. 吉林: 吉林大学, 2016.

    Jiang Rongchao. Research on lightweight multi-objective optimization method and performance matching for car suspension components[D]. Jilin: Jilin University, 2016.
    [2]
    Jin Yi, Liu Jin, Zhen Tong, et al. Research on fatigue behavior of 800 MPa grade high strength steel used for chassis control arm[J]. Shanghai Metals, 2021,43(6):47−51. (金一, 柳进, 甄彤, 等. 底盘控制臂用800 MPa级高强度钢的疲劳特性研究[J]. 上海金属, 2021,43(6):47−51.
    [3]
    Li Y, Yang H, Xing Z. Numerical simulation and process optimization of squeeze casting process of an automobile control arm[J]. The International Journal of Advanced Manufacturing Technology, 2017,88(1):941−947.
    [4]
    Lu Chunyan, Xu Zhaolei, Liu Hejun, et al. Multi-objective topology optimization design of automobile suspension control arm[J]. Mechanical & Electrical Engineering Technology, 2021,50(10):93−95,131. (鲁春艳, 徐赵磊, 刘何俊, 等. 汽车悬架控制臂多目标拓扑优化设计[J]. 机电工程技术, 2021,50(10):93−95,131.
    [5]
    Zhang Yi, Han Yang, Zhang Zhou. Numerical simulation of stress and deformation of Q690D high-strength steel thick plate multi-layer and multi-pass welding[J]. Hot Working Technology, 2022,51(8):117−121. (张义, 韩阳, 张舟. Q690D高强钢厚板多层多道焊应力与变形的数值模拟[J]. 热加工工艺, 2022,51(8):117−121.
    [6]
    Zheng B, Yang S, Jin X, et al. Test on residual stress distribution of welded S600E high-strength stainless steel sections[J]. Journal of Constructional Steel Research, 2020,168:105994. doi: 10.1016/j.jcsr.2020.105994
    [7]
    Colombo T C A, Rego R, Faria A R D, et al. Processing-induced residual stresses in TWIP steel weld spots[J]. Materials and Manufacturing Processes, 2020,32(5):572−578.
    [8]
    Kromm A, Lausch T, Schröpfer D, et al. Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: part I-effect of heat control on welding stresses and stress relief cracking[J]. Welding in the World, 2020,64(5):807−817. doi: 10.1007/s40194-020-00875-6
    [9]
    Dong Xianchun, Zhang Xi, Chen Yanqing. Microstructure and toughness in the coarse grain region of low carbon bainite high strength steel plate for Q690CFD[J]. Iron Steel Vanadium Titanium, 2011,32(1):62−66. (董现春, 张熹, 陈延清. 低碳贝氏体高强钢Q690CFD焊接粗晶区组织韧性[J]. 钢铁钒钛, 2011,32(1):62−66.
    [10]
    Yi J, Zhang J, Cao S, et al. Effect of welding sequence on residual stress and deformation of 6061-T6 aluminium alloy automobile component[J]. Transactions of Nonferrous Metals Society of China, 2019,29(2):9−15.
    [11]
    Pavan A R, Arivazhagan B, Vasudevan M, et al. Numerical simulation and validation of residual stresses and distortion in type 316L (N) stainless steel weld joints fabricated by advanced welding techniques[J]. CIRP Journal of Manufacturing Science and Technology, 2022,39:294−307. doi: 10.1016/j.cirpj.2022.08.010
    [12]
    Ghafouri M, Ahn J, Mourujärvi J, et al. Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models[J]. Engineering Structures, 2020,219:110804. doi: 10.1016/j.engstruct.2020.110804
    [13]
    Rong Y, Xu J, Huang Y, et al. Review on finite element analysis of welding deformation and residual stress[J]. Science and Technology of Welding and Joining, 2018,23(3):198−208. doi: 10.1080/13621718.2017.1361673
    [14]
    Wang X, Gong J, Zhao Y, et al. Numerical simulation to study the effect of arc travelling speed and welding sequences on residual stresses in welded sections of new ferritic p92 pipes[J]. High Temperature Materials and Processes, 2016,35(2):121−128. doi: 10.1515/htmp-2014-0170
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (461) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return