Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Teng Aijun, Yuan Xinran, Zhang Dongbin, Xin Yanan, Liu Tianhao, Han Huiguo, Du Guangchao. Research on preparation and sodium storage properties of ultrafine nano-sodium ferric vanadium phosphate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 7-12. doi: 10.7513/j.issn.1004-7638.2024.02.002
Citation: Teng Aijun, Yuan Xinran, Zhang Dongbin, Xin Yanan, Liu Tianhao, Han Huiguo, Du Guangchao. Research on preparation and sodium storage properties of ultrafine nano-sodium ferric vanadium phosphate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 7-12. doi: 10.7513/j.issn.1004-7638.2024.02.002

Research on preparation and sodium storage properties of ultrafine nano-sodium ferric vanadium phosphate

doi: 10.7513/j.issn.1004-7638.2024.02.002
  • Received Date: 2023-09-22
    Available Online: 2024-05-14
  • Publish Date: 2024-04-30
  • Due to the high price, large particle size and poor conductivity of vanadium based polyanion compounds, a new type of sodium ferric vanadium phosphate material was prepared by doping iron element to partially replace vanadium element. The phase information and sodium storage properties of sodium ferric vanadium phosphate were analyzed by XRD, SEM, UV-vis, laser particle size and BET. The research results show that the introduction of Fe element not only reduces the material cost, but also makes the prepared sodium ferric vanadium phosphate have the smaller particle size, larger specific surface area and better electrical conductivity compared with sodium vanadium phosphate. The specific surface area of sodium ferric vanadium phosphate is 46.5 m2/g, and the compaction density is 1.85 g/cm3, which is higher than that of the sodium vanadium phosphate, while 16.3 m2/g for the specific surface area and 1.79 g/cm3 for the compaction density of sodium vanadium phosphate. Meanwhile, the obtained sodium ferric vanadium phosphate shows higher energy storage performance. Under the condition of current density at 1 mA/g, the discharge specific capacity of sodium ferric vanadium phosphate reaches 99.1 mAh/g, which is larger than that of sodium vanadium phosphate (91.9 mAh/g) at the same discharge current density. At the same time, after 10 charge and discharge cycles, the discharge capacity of 85.3 mAh/g can be maintained (in the same condition, 79.9 mAh/g of the discharge capacity can be maintained for the sodium vanadium phosphate) , showing good cycle stability.
  • loading
  • [1]
    Pan Wenli, Guan Wenhao, Jiang Yinzhu. Research advances in polyanion-type cathodes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020,36(5):69−80. (潘雯丽, 关文浩, 姜银珠. 聚阴离子型钠离子电池正极材料的研究进展[J]. 物理化学学报, 2020,36(5):69−80. doi: 10.3866/PKU.WHXB201905017

    Pan Wenli, Guan Wenhao, Jiang Yinzhu. Research advances in polyanion-type cathodes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 69−80. doi: 10.3866/PKU.WHXB201905017
    [2]
    Yi Hongming, Lü Zhiqiang, Zhang Huamin, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020,9(5):1350−1369. (易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020,9(5):1350−1369.

    Yi Hongming, Lü Zhiqiang, Zhang Huamin, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350−1369.
    [3]
    Chao Dongliang, Lai Chunhan, Liang Pei, et al. Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high‐rate full sodium ion storage device[J]. Advanced Energy Materials, 2018,8(16):1800058.1−1800058.8.
    [4]
    Qi Yuruo, Tong Zizheng, Zhao Junmei, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018(2):1−16.
    [5]
    Liu Qiang, Meng Xing, Wei Zhixuan, et al. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016,8(46):31709−31715.
    [6]
    Cheng Cheng, Zang Xiaoxian, Hou Wenxiu, et al. Construction of threedimensional electronic interconnected Na3V2(PO4)3/C as cathode for sodium ion batteries[J]. Journal of Alloys and Compounds, 2022,899:163363. doi: 10.1016/j.jallcom.2021.163363
    [7]
    Shen Xing, Zhou Quan, Han Miao, et al. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries[J]. Nature Communication, 2021, 12: 2848.
    [8]
    Cheng Bin. Syntheses and characteriazation of electrode materials lithium/sodium vanadium phosphates for lithium/sodium-ion batterties[D]. Beijing: University of Science and Technology of China, 2016. (程斌. 锂/钠离子电池电极材料磷酸钒锂/钠的制备及表征[D]. 北京: 中国科学技术大学, 2016.

    Cheng Bin. Syntheses and characteriazation of electrode materials lithium/sodium vanadium phosphates for lithium/sodium-ion batterties[D]. Beijing: University of Science and Technology of China, 2016.
    [9]
    Wang Sha. Structural design and electrochemical properties of Na4FeV(PO4)3 cathode material for sodium-ion batteries[D]. Changsha: Central South University, 2022. (王沙. 钠离子电池正极材料磷酸钒铁钠的构筑与电化学性能[D]. 长沙: 中南大学, 2022.

    Wang Sha. Structural design and electrochemical properties of Na4FeV(PO4)3 cathode material for sodium-ion batteries[D]. Changsha: Central South University, 2022.
    [10]
    Aragon M J, Lavela P, Ortiz G F, et al. Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015,162(2):A3077−A3083. doi: 10.1149/2.0151502jes
    [11]
    Sun Chang, Deng Zerong, Jiang Ningbo, et al. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022,11(4):1184−1200. (孙畅, 邓泽荣, 江宁波, 等. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022,11(4):1184−1200.

    Sun Chang, Deng Zerong, Jiang Ningbo, et al. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1184−1200.
    [12]
    Zhou Weidong, Xue Leigang, Lu Xuejian, et al. Na xMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction[J]. Nano Letters, 2016,16(12):7836−7841. doi: 10.1021/acs.nanolett.6b04044
    [13]
    Wu Changwei. Study on aluminum-doped sodium vanadate phosphate as cathode material[D]. Beijing: Beijing University of Chemical Technology, 2020. (吴长伟. 铝掺杂的钠正极材料磷酸钒钠的研究[D]. 北京: 北京化工大学, 2020.

    Wu Changwei. Study on aluminum-doped sodium vanadate phosphate as cathode material[D]. Beijing: Beijing University of Chemical Technology, 2020.
    [14]
    Li Junpeng. Study on manganese doped NASICON type sodium vanadium phosphate cathode materials[D]. Beijing: Beijing University of Chemical Technology, 2022. (李俊朋. 锰掺杂NASICON型钠电正极材料磷酸钒钠的研究[D]. 北京: 北京化工大学, 2022.

    Li Junpeng. Study on manganese doped NASICON type sodium vanadium phosphate cathode materials[D]. Beijing: Beijing University of Chemical Technology, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (96) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return