Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Xu Jianlin, He Yilin, Ma Zhanshan, Pang Zhongya, Tian Feng, Zhang Xueqiang, Zou Xingli, Zhu Fuxing. Study on phase and physical properties of molten salt system for chlorination of titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 20-27. doi: 10.7513/j.issn.1004-7638.2024.02.004
Citation: Xu Jianlin, He Yilin, Ma Zhanshan, Pang Zhongya, Tian Feng, Zhang Xueqiang, Zou Xingli, Zhu Fuxing. Study on phase and physical properties of molten salt system for chlorination of titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 20-27. doi: 10.7513/j.issn.1004-7638.2024.02.004

Study on phase and physical properties of molten salt system for chlorination of titanium slag

doi: 10.7513/j.issn.1004-7638.2024.02.004
More Information
  • Received Date: 2023-11-20
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • The molten salt chlorination method is a technique developed specifically for the preparation of titanium tetrachloride using high-calcium magnesium titanium slag materials. During long-term production practices, it has been observed that improper control of the composition in the chlorination furnace can lead to severe foaming of the molten salt, which in turn can result in issues such as salt spray that negatively impact production. To address this issue, a comprehensive study was conducted to investigate the composition, phase, and physical properties of both normal and foaming chlorination salts using analytical techniques including XRD, SEM & EDS, and DSC-TGA. The results reveal that the foaming salt has a significantly higher oxygen content and a greater presence of insoluble solid phase components compared to the normal salt. The insoluble solid phase components primarily consist of compound oxides such as Na2Al0.5Fe9.5O15 and Mg1.6Ti1.1O4. Additionally, the foaming salt exhibits a weight loss rate of 48.71% in the temperature range of 300~1280 °C, which is 13.73% lower than that of the normal salt. Furthermore, the melting point of the foaming salt shows an increasing trend. The oxygen content in foam salt is about 10% higher than that of normal salt. After volatilization at high temperatures, the residue is irregular particle agglomerates rich in iron, magnesium, aluminum, silicon, calcium, oxygen, and other elements, while the residue of normal salt is a dense body of uniform iron, magnesium, and oxygen elements. Traditional Archimedean methods are unable to accurately measure the density of both normal and foaming salts due to the presence of insoluble solid phase materials. However, the volume density method can be utilized, yielding density values of 2.02 g/cm3 and 1.77 g/cm3 for the normal and foaming salts, respectively.
  • loading
  • [1]
    Luo Fangcheng, Mo Wei, Deng Guozhu. Titanium metallurgy (The second edition)[M]. Beijing: Metallurgical Industry Press, 2007 (罗方承, 莫畏, 邓国珠. 钛冶金(第2版)[M]. 北京: 冶金工业出版社, 2007.

    Luo Fangcheng, Mo Wei, Deng Guozhu. Titanium metallurgy (The second edition)[M]. Beijing: Metallurgical Industry Press, 2007
    [2]
    He Lei, Wang Yunfeng. World titanium industry status and development trend[J]. Advanced Materials Industry, 2018(1):29−34. (何蕾, 王运锋. 世界钛工业现状及发展趋势[J]. 新材料产业, 2018(1):29−34. doi: 10.3969/j.issn.1008-892X.2018.01.007

    He Lei, Wang Yunfeng. World titanium industry status and development trend[J]. Advanced Materials Industry, 2018(1): 29−34. doi: 10.3969/j.issn.1008-892X.2018.01.007
    [3]
    Qiu G, Guo Y. Current situation and development trend of titanium metal industry in China[J]. International Journal of Minerals, Metallurgy and Materials, 2022,29(4):599−610. doi: 10.1007/s12613-022-2455-y
    [4]
    Ye Endong, Cheng Xiaozhe, Miao Huijun, et al. Study on preparation of artificial rutile from Panxi titanium concentrate[J]. Iron Steel Vanadium Titanium, 2015,36(1):7−15. (叶恩东, 程晓哲, 缪辉俊, 等. 攀西钛精矿制备人造金红石研究[J]. 钢铁钒钛, 2015,36(1):7−15.

    Ye Endong, Cheng Xiaozhe, Miao Huijun, et al. Study on preparation of artificial rutile from Panxi titanium concentrate[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 7−15.
    [5]
    Li Zheng, Chen Congxi. Global titanium resources industry development status[J]. Acta Geoscientica Sinica, 2021,42(2):245−250. (李政, 陈从喜. 全球钛资源行业发展现状[J]. 地球学报, 2021,42(2):245−250.

    Li Zheng, Chen Congxi. Global titanium resources industry development status[J]. Acta Geoscientica Sinica, 2021, 42(2): 245−250.
    [6]
    Zhu Fuxing, Jiao Yu, Li Liang, et al. Current situation and development trend of mineral processing technology of vanadium titanium magnetite in Panxi[J]. Mining and Metallurgy, 2021,30(4):26−32, 40. (朱福兴, 焦钰, 李亮, 等. 攀西钒钛磁铁矿的选矿技术现状及发展趋势[J]. 矿冶, 2021,30(4):26−32, 40. doi: 10.3969/j.issn.1005-7854.2021.04.005

    Zhu Fuxing, Jiao Yu, Li Liang, et al. Current situation and development trend of mineral processing technology of vanadium titanium magnetite in Panxi[J]. Mining and Metallurgy, 2021, 30(4): 26−32, 40. doi: 10.3969/j.issn.1005-7854.2021.04.005
    [7]
    Li Kaihua, Li Liang, Miao Qingdong, et al. Study on chlorination characteristics of molten salt of titanium slag in Panzhihua[J]. Iron Steel Vanadium Titanium, 2016,37(5):9−14. (李开华, 李亮, 苗庆东, 等. 攀枝花钛渣熔盐氯化特性研究[J]. 钢铁钒钛, 2016,37(5):9−14. doi: 10.7513/j.issn.1004-7638.2016.05.002

    Li Kaihua, Li Liang, Miao Qingdong, et al. Study on chlorination characteristics of molten salt of titanium slag in Panzhihua[J]. Iron Steel Vanadium Titanium, 2016, 37(5): 9−14. doi: 10.7513/j.issn.1004-7638.2016.05.002
    [8]
    Lu Hui, Yang Renmu, Meng Jun, et al. Study on the molten salt system of TiCl4 molten salt chlorinator[J]. Iron Steel Vanadium Titanium, 2013,34(5):1−8. (路辉, 杨仁牧, 蒙钧, 等. TiCl4熔盐氯化炉熔盐体系研究[J]. 钢铁钒钛, 2013,34(5):1−8. doi: 10.7513/j.issn.1004-7638.2013.05.001

    Lu Hui, Yang Renmu, Meng Jun, et al. Study on the molten salt system of TiCl4 molten salt chlorinator[J]. Iron Steel Vanadium Titanium, 2013, 34(5): 1−8. doi: 10.7513/j.issn.1004-7638.2013.05.001
    [9]
    Li Liang. Basic and application study of carbothermic chlorination of low grade high calcium magnesium titanium slag[D]. Kunming: Kunming University of Science and Technology, 2021. (李亮. 低品位高钙镁钛渣碳热氯化的基础及应用研究[D]. 昆明: 昆明理工大学, 2021.

    Li Liang. Basic and application study of carbothermic chlorination of low grade high calcium magnesium titanium slag[D]. Kunming: Kunming University of Science and Technology, 2021.
    [10]
    Cheng Guorong. Study on the chloride series composition of titanium slag molten salt in Panzhihua[J]. Iron Steel Vanadium Titanium, 1998,19(2):9−12. (程国荣. 攀枝花钛渣熔盐氯化盐系组成的研究[J]. 钢铁钒钛, 1998,19(2):9−12.

    Cheng Guorong. Study on the chloride series composition of titanium slag molten salt in Panzhihua[J]. Iron Steel Vanadium Titanium, 1998, 19(2): 9−12.
    [11]
    Qin Xinghua. Application and analysis of chlorination technology in smelting titanium slag of Panzhihua titanium concentrate[J]. Iron Steel Vanadium Titanium, 2015,36(5):16−19. (秦兴华. 全攀枝花钛精矿冶炼钛渣熔盐氯化技术应用分析[J]. 钢铁钒钛, 2015,36(5):16−19.

    Qin Xinghua. Application and analysis of chlorination technology in smelting titanium slag of Panzhihua titanium concentrate[J]. Iron Steel Vanadium Titanium, 2015, 36(5): 16−19.
    [12]
    Yan Hengwei, Yang Jianhong, Li Wangxing. Surface tension and density in the KF-NaF-AlF3-based electrolyte[J]. Journal of Chemical & Engineering Data, 2011,56(11):4147−4151.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (460) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return