| Citation: | Liu Quan, Guan Xiaoping, Xiao Jun, Yang Ning. Simulation of arc characteristics in a titanium slag EAF with hollow electrode[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 28-34. doi: 10.7513/j.issn.1004-7638.2024.02.005 |
| [1] |
Kukharev A, Bilousov V, Bilousov E, et al. The peculiarities of convective heat transfer in melt of a multiple-electrode arc furnace[J]. Metals, 2019,9(11):1174. doi: 10.3390/met9111174
|
| [2] |
Hu Kejun, Xi Gan, Yao Juan, et al. Current status of foreign titanium slag production technology[J]. Rare Metals Letters, 2006(11):1−7. (胡克俊, 锡淦, 姚娟, 等. 国外钛渣生产技术现状[J]. 稀有金属快报, 2006(11):1−7.
Hu Kejun, Xi Gan, Yao Juan, et al. Current status of foreign titanium slag production technology[J]. Rare Metals Letters, 2006(11): 1−7.
|
| [3] |
Liu Juan. Research on UGS slag production process [D]. Kunming: Kunming University of Science and Technology, 2013. (刘娟. UGS渣生产工艺研究[D]. 昆明: 昆明理工大学, 2013.
Liu Juan. Research on UGS slag production process [D]. Kunming: Kunming University of Science and Technology, 2013.
|
| [4] |
Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in arc furnace[J]. Chinese Journal of Engineering, 2020,42(S):60. (姚聪林, 朱红春, 姜周华, 等. 电弧炉内长电弧等离子体的数值模拟[J]. 工程科学学报, 2020,42(S):60.
Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60.
|
| [5] |
Chen Y , Ryan S, Silaen A K, et al. Numerical investigation of AC electric arc plasma heat dissipation in EAF[J]. Ironmaking & Steelmaking, 2021,49:255−267.
|
| [6] |
Rehmet C, Fabry F, Rohani V, et al. Unsteady state analysis of free-burning arcs in a 3-phase AC plasma torch: Comparison between parallel and coplanar electrode configurations[J]. Plasma Sources Science and Technology, 2014,23(6):065011. doi: 10.1088/0963-0252/23/6/065011
|
| [7] |
Sheng Jifu. A preliminary analysis of certain characteristics in the DC hollow electrode arc furnace smelting titanium slag[J]. Titanium Industry Progress, 2003(1):27−32. (盛继孚. 直流-空心电极电炉熔炼钛渣的某些特性浅析[J]. 钛工业进展, 2003(1):27−32.
Sheng Jifu. A preliminary analysis of certain characteristics in the DC hollow electrode arc furnace smelting titanium slag[J]. Titanium Industry Progress, 2003(1): 27−32.
|
| [8] |
Hsu K C, Pfender E. Two‐temperature modeling of the free‐burning, high‐intensity arc[J]. Journal of Applied Physics, 1983,54(8):4359−4366. doi: 10.1063/1.332672
|
| [9] |
Yao C L, Zhu H C, Jiang Z H, et al. Numerical analysis of fluid flow and heat transfer by means of a unified model in a direct current electric arc furnace[J]. Steel Research International, 2021,92(6):2000664. doi: 10.1002/srin.202000664
|
| [10] |
Gleizes A, Cressault Y, Teulet P. Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapours[J]. Plasma Sources Science and Technology, 2010,19(5):055013. doi: 10.1088/0963-0252/19/5/055013
|
| [11] |
Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A[J]. Journal of Physics D: Applied Physics, 1972,5(8):1422. doi: 10.1088/0022-3727/5/8/309
|
| [12] |
Szekely J, Mckelliget J, Choudhary M. Heat transfer fluid flow and bath circulation in electric arc furnaces and DC plasma furnaces[J]. Ironmaking & Steelmaking, 1983,10(4):169.
|
| [13] |
Wang F, Jin Z, Zhu Z. Numerical study of dc arc plasma and molten bath in dc electric arc furnace[J]. Ironmaking & Steelmaking, 2006,33(1):39−44.
|