Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Liu Quan, Guan Xiaoping, Xiao Jun, Yang Ning. Simulation of arc characteristics in a titanium slag EAF with hollow electrode[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 28-34. doi: 10.7513/j.issn.1004-7638.2024.02.005
Citation: Liu Quan, Guan Xiaoping, Xiao Jun, Yang Ning. Simulation of arc characteristics in a titanium slag EAF with hollow electrode[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 28-34. doi: 10.7513/j.issn.1004-7638.2024.02.005

Simulation of arc characteristics in a titanium slag EAF with hollow electrode

doi: 10.7513/j.issn.1004-7638.2024.02.005
More Information
  • Received Date: 2023-08-01
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • The arc characteristics inside the titanium slag electric arc furnace (EAF) play a crucial role in the melting and reduction of furnace materials. In this study, a method combining fluid mechanics and electromagnetic field was employed to establish a mathematical model for the arc region inside the EAF. Multiple physical fields (flow field, temperature field, and electromagnetic field) within the arc region were simulated to investigate the influence of the hollow electrode. The results show that compared to the solid electrode, the temperature and flow field of the hollow electrode still exhibit a "bell-shaped" distribution. However, due to the Lorentz force and pressure, significantly larger negative velocities appear near the hollow region, hindering the feeding process at the hollow electrode. Furthermore, research shows that the inner diameter of the hollow electrode affects the current density distribution in the arc region, and then determines the distribution characteristics of the Lorentz force and pressure, which reveals the influence mechanism of the hollow electrode on the arc characteristics.
  • loading
  • [1]
    Kukharev A, Bilousov V, Bilousov E, et al. The peculiarities of convective heat transfer in melt of a multiple-electrode arc furnace[J]. Metals, 2019,9(11):1174. doi: 10.3390/met9111174
    [2]
    Hu Kejun, Xi Gan, Yao Juan, et al. Current status of foreign titanium slag production technology[J]. Rare Metals Letters, 2006(11):1−7. (胡克俊, 锡淦, 姚娟, 等. 国外钛渣生产技术现状[J]. 稀有金属快报, 2006(11):1−7.

    Hu Kejun, Xi Gan, Yao Juan, et al. Current status of foreign titanium slag production technology[J]. Rare Metals Letters, 2006(11): 1−7.
    [3]
    Liu Juan. Research on UGS slag production process [D]. Kunming: Kunming University of Science and Technology, 2013. (刘娟. UGS渣生产工艺研究[D]. 昆明: 昆明理工大学, 2013.

    Liu Juan. Research on UGS slag production process [D]. Kunming: Kunming University of Science and Technology, 2013.
    [4]
    Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in arc furnace[J]. Chinese Journal of Engineering, 2020,42(S):60. (姚聪林, 朱红春, 姜周华, 等. 电弧炉内长电弧等离子体的数值模拟[J]. 工程科学学报, 2020,42(S):60.

    Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in arc furnace[J]. Chinese Journal of Engineering, 2020, 42(S): 60.
    [5]
    Chen Y , Ryan S, Silaen A K, et al. Numerical investigation of AC electric arc plasma heat dissipation in EAF[J]. Ironmaking & Steelmaking, 2021,49:255−267.
    [6]
    Rehmet C, Fabry F, Rohani V, et al. Unsteady state analysis of free-burning arcs in a 3-phase AC plasma torch: Comparison between parallel and coplanar electrode configurations[J]. Plasma Sources Science and Technology, 2014,23(6):065011. doi: 10.1088/0963-0252/23/6/065011
    [7]
    Sheng Jifu. A preliminary analysis of certain characteristics in the DC hollow electrode arc furnace smelting titanium slag[J]. Titanium Industry Progress, 2003(1):27−32. (盛继孚. 直流-空心电极电炉熔炼钛渣的某些特性浅析[J]. 钛工业进展, 2003(1):27−32.

    Sheng Jifu. A preliminary analysis of certain characteristics in the DC hollow electrode arc furnace smelting titanium slag[J]. Titanium Industry Progress, 2003(1): 27−32.
    [8]
    Hsu K C, Pfender E. Two‐temperature modeling of the free‐burning, high‐intensity arc[J]. Journal of Applied Physics, 1983,54(8):4359−4366. doi: 10.1063/1.332672
    [9]
    Yao C L, Zhu H C, Jiang Z H, et al. Numerical analysis of fluid flow and heat transfer by means of a unified model in a direct current electric arc furnace[J]. Steel Research International, 2021,92(6):2000664. doi: 10.1002/srin.202000664
    [10]
    Gleizes A, Cressault Y, Teulet P. Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapours[J]. Plasma Sources Science and Technology, 2010,19(5):055013. doi: 10.1088/0963-0252/19/5/055013
    [11]
    Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A[J]. Journal of Physics D: Applied Physics, 1972,5(8):1422. doi: 10.1088/0022-3727/5/8/309
    [12]
    Szekely J, Mckelliget J, Choudhary M. Heat transfer fluid flow and bath circulation in electric arc furnaces and DC plasma furnaces[J]. Ironmaking & Steelmaking, 1983,10(4):169.
    [13]
    Wang F, Jin Z, Zhu Z. Numerical study of dc arc plasma and molten bath in dc electric arc furnace[J]. Ironmaking & Steelmaking, 2006,33(1):39−44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (391) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return