| Citation: | Quan Yuanxia, Xiang Quanjin, Quan Xuejun, Ke Lianghui, Li Li. Structure-property relationship between surface structure and water dispersity of titanium dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 35-41. doi: 10.7513/j.issn.1004-7638.2024.02.006 |
| [1] |
Mathai S, Shaji P S. Different coating methods of titanium dioxide on metal substrates for orthopedic and dental applications: A review[J]. Asian Journal of Chemistey, 2021,34(1):9−17. doi: 10.14233/ajchem.2022.23512
|
| [2] |
Liang Ying, Huang Guohe, Xin Xiaying, et al. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review[J]. Journal of Materials Science & Technology, 2022,112(10):239−262.
|
| [3] |
Rengui G, Zhijuan H, Shanshan L, et al. A novel photoelectrochemical approach for efficient assessment of TiO2 pigments weatherability[J]. Powder Technology, 2021,380:334−340. doi: 10.1016/j.powtec.2020.11.004
|
| [4] |
Vyboishchik A V. Production methods temporary methods of production and application of pigments obtained from titanium dioxide[J]. IOP Conference Series: Materials Science and Engineering, 2018,451:012004. doi: 10.1088/1757-899X/451/1/012004
|
| [5] |
Lu Ruifang, Sun Qiang, Yang Fang, et al. Study on the effect of aluminum zinc composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022,43(3):14−19. (路瑞芳, 孙蔷, 杨芳, 等. 铝锌复合盐处理对金红石型TiO2质量的影响研究[J]. 钢铁钒钛, 2022,43(3):14−19.
Lu Ruifang, Sun Qiang, Yang Fang, et al. Study on the effect of aluminum zinc composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 14−19.
|
| [6] |
Wang Z, Chen K, Zhu J, et al. Formation mechanism of rutile in sulfate process[J]. Materials Science and Engineering(IOP Conference Series), 2019,562:012002. doi: 10.1088/1757-899X/562/1/012002
|
| [7] |
Wu Jianchun, Lu Ruifang, Ma Weiping. Analysis of differences in titanium white treatment between zinc and aluminum salts[J]. Iron Steel Vanadium Titanium, 2020,41(2):29−32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29−32.
Wu Jianchun, Lu Ruifang, Ma Weiping. Analysis of differences in titanium white treatment between zinc and aluminum salts[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 29−32.
|
| [8] |
Khusnun N F, Jalil A A, Abdullah T A T, et al. Influence of TiO2 dispersion on silica support toward enhanced amine assisted CO2 photoconversion to methanol[J]. Journal of CO2 Utilization, 2022,58:101901.
|
| [9] |
Zhang Yunsheng, Yin Hengbo, Wang Aili, et al. Deposition and characterization of binary Al2O3/SiO2 coating layers on the surfaces of rutile TiO2 and the pigmentary properties[J]. Applied Surface Science, 2010,257(4):1351−1360. doi: 10.1016/j.apsusc.2010.08.071
|
| [10] |
Liu Jiaqi, Zhang Fengmei, Dou Shengping, et al. Adsorption of serine at the anatase TiO2/water interface: A combined ATR-FTIR and DFT study[J]. Science of The Total Environment, 2022,807(1):150839.
|
| [11] |
Guo Junhuai, Shen Xingcan, Wu Liyan, et al. The accelerated crystal phase transition for rutile titania[J]. Chinese Journal of Applied Chemistry, 2003,20(7):647−653.
|
| [12] |
Hidalgo-Jimenez J, Wang Q, Edalati K, et al. Phase transformations, vacancy formation and variations of optical and photocatalytic properties in TiO2-ZnO composites by highpressure torsion[J]. International Journal of Plasticity, 2020,124:170−185. doi: 10.1016/j.ijplas.2019.08.010
|
| [13] |
Jin Bin. Discussion on the mechanism of titanium dioxide water dispersion[J]. Paint Industry, 2003(3):17−19. (金斌. 钛白粉水分散性机理的探讨[J]. 涂料工业, 2003(3):17−19.
Jin Bin. Discussion on the mechanism of titanium dioxide water dispersion[J]. Paint Industry, 2003(3): 17−19.
|
| [14] |
Wang Haibo, Li Li, Luo Zhiqiang, et al. Study on the viscosity of zinc salt based titanium dioxide slurry [J]. Iron Steel Vanadium Titanium, 2019, 40(2): 61-65. (王海波, 李礼, 罗志强, 等. 锌盐类钛白初品浆料黏度研究[J]. 钢铁钒钛, 2019, 40(2): 61-65.
Wang Haibo, Li Li, Luo Zhiqiang, et al. Study on the viscosity of zinc salt based titanium dioxide slurry [J]. Iron Steel Vanadium Titanium, 2019, 40(2): 61-65.
|
| [15] |
Wu Jianchun, Lu Ruifang, Sun Qiang, et al. Study on the effect of zinc salt treatment agent dosage on the performance of titanium dioxide[J]. Iron Steel Vanadium Titanium, 2022,43(5):35−39. (吴健春, 路瑞芳, 孙蔷, 等. 锌系盐处理剂加量对钛白性能的影响研究[J]. 钢铁钒钛, 2022,43(5):35−39.
Wu Jianchun, Lu Ruifang, Sun Qiang, et al. Study on the effect of zinc salt treatment agent dosage on the performance of titanium dioxide[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 35−39.
|
| [16] |
Bedri E, Robert A Hunsicker, Gary W Simmons, et al. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation[J]. Langmuir, 2001,17(9):2664−2669. doi: 10.1021/la0015213
|
| [17] |
Manso M, Valadas S, Pessanha S, et al. Characterizing Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction, and Fourier transform infrared analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy. 2010, 65(4): 321-327.
|
| [18] |
Krebs F, Höfft O, Endres F. Investigations on the electrochemistry and reactivity of tantalum species in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide using X-ray photoelectron spectroscopy (in situ and ex-situ XPS)[J]. Applied Surface Science, 2023,608(15):155130.
|
| [19] |
Bruno R, Valérie F, Raphaël E, et al. XPS study of Ge-Se-Te surfaces functionalized with organosilanes[J]. Applied Surface Science, 2023,607(1):154921.
|
| [20] |
Viviana J G, Ester V, Beatriz V, et al. Eco-friendly mechanochemical synthesis of titania-graphene nanocomposites for pesticide photodegradation[J]. Separation and Purification Technology, 2022,289(15):120638.
|
| [21] |
Dan M, Tao E, Shuyi Y. Efficient removal of Cu(II) with graphene oxide-titanium dioxide/sodium alginate composite beads: Preparation, characterization, and adsorption mechanism[J]. Journal of Environmental Chemical Engineering, 2021,9(6):106501. doi: 10.1016/j.jece.2021.106501
|
| [22] |
Chi Mingyang, Sun Xueni, Achintya Sujan, et al. A quantitative XPS examination of UV induced surface modification of TiO2 sorbents for the increased saturation capacity of sulfur heterocycles[J]. Fuel, 2019,238:454−461. doi: 10.1016/j.fuel.2018.10.114
|
| [23] |
Liu Yongming, Shi Jianyu, Lu Qinqin, et al. Research progress of solid surface energy calculation based on Young's equation[J]. Material Guide, 2013,27(11):123−129. (刘永明, 施建宇, 鹿芹芹, 等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报, 2013,27(11):123−129.
Liu Yongming, Shi Jianyu, Lu Qinqin, et al. Research progress of solid surface energy calculation based on Young's equation[J]. Material Guide, 2013, 27(11): 123−129.
|
| [24] |
Qin Sijia, Jin Yuankai,Yin Fuxing, et al. Can solid surface energy be a predictor of ice nucleation ability?[J]. Applied Surface Science, 2022,602:154193.
|
| [25] |
Tanaka T, Takayanagi T. Quantum reactive scattering calculations of H+F2 and Mu+F2 reactions on a new ab initio potential energy surface[J]. Chemical Physics Letters, 2010,496(4-6):248−253. doi: 10.1016/j.cplett.2010.07.070
|
| [26] |
Wei X, Jiang S, Klöckner A, et al. An integral equation method for the Cahn-Hilliard equation in the wetting problem[J]. Journal of Computational Physics, 2020,419:109521. doi: 10.1016/j.jcp.2020.109521
|
| [27] |
Xu Q, Zhao J, Xu H, et al. Dispersion of TiO2 particles and preparation of SiO2 coating layers on the surfaces of TiO2[J]. Materials Research Innovations, 2015,19(sup5):142−142-S5.145.
|
| [28] |
Paramasivam V, Beemaraj R K, Sundaram M, et al. Investigate the characterization and synthesis process of titanium dioxide nanoparticles[J]. Materials Today: Proceedings, 2022,52:1140−1142. doi: 10.1016/j.matpr.2021.11.009
|
| [29] |
Pandey F P, Singh S. Time resolved fluorescence and Raman properties, and zeta potential of zinc ferrite nanoparticles dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB)[J]. Journal of Molecular Liquids, 2020,315:113820. doi: 10.1016/j.molliq.2020.113820
|
| [30] |
Fortunato G, Tenniche A, Gottardo L, et al. Development of poly-(ethylene terephthalate) masterbatches incorporating highly dispersed TiO2 nanoparticles: Investigation of morphologies by optical and rheological procedures[J]. European Polymer Journal, 2014,57:75−82. doi: 10.1016/j.eurpolymj.2014.05.007
|
| [31] |
Kosmulski M, Mączka E. Zeta potential and particle size in dispersions of alumina in 50-50 w/w ethylene glycol-water mixture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022,654:130168. doi: 10.1016/j.colsurfa.2022.130168
|
| [32] |
Costello M J, Johnsen S, Gilliland K O, et al. Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory[J]. Investigative Ophthalmology & Visual Science, 2007,48(1):303−312.
|
| [33] |
Pazokifard S, Mirabedini S M, Esfandeh M, et al. Silane grafting of TiO2 nanoparticles: dispersibility and photoactivity in aqueous solutions[J]. Surface and Interface Analysis, 2012,44(1):41−47. doi: 10.1002/sia.3767
|
| [34] |
Wan Jiang, Wang Xiaohuan, Liu Zhiyong. Zeta potential study of bentonite water suspension system[J]. Non Metallic Minerals, 2017,40(4):23−25. (万江, 王晓焕, 刘志勇. 膨润土-水悬浮体系的Zeta电位研究[J]. 非金属矿, 2017,40(4):23−25.
Wan Jiang, Wang Xiaohuan, Liu Zhiyong. Zeta potential study of bentonite water suspension system[J]. Non Metallic Minerals, 2017, 40(4): 23−25.
|
| [35] |
Zheng Caihua. Effect of WD-50 surface modification on zeta potential of powder[J]. China Ceramics, 2014,50(6):22−24. (郑彩华. WD-50表面改性对粉体Zeta电位的影响[J]. 中国陶瓷, 2014,50(6):22−24.
Zheng Caihua. Effect of WD-50 surface modification on zeta potential of powder[J]. China Ceramics, 2014, 50(6): 22−24.
|