Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Quan Yuanxia, Xiang Quanjin, Quan Xuejun, Ke Lianghui, Li Li. Structure-property relationship between surface structure and water dispersity of titanium dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 35-41. doi: 10.7513/j.issn.1004-7638.2024.02.006
Citation: Quan Yuanxia, Xiang Quanjin, Quan Xuejun, Ke Lianghui, Li Li. Structure-property relationship between surface structure and water dispersity of titanium dioxide[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 35-41. doi: 10.7513/j.issn.1004-7638.2024.02.006

Structure-property relationship between surface structure and water dispersity of titanium dioxide

doi: 10.7513/j.issn.1004-7638.2024.02.006
More Information
  • Received Date: 2023-11-30
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • The wettability and dispersion of titanium dioxide in water is very important for the inorganic coating and application performance. In this study, the relationship between the surface structure and the water wettability and dispersion of titanium dioxide treated with zinc and aluminum salts was studied. The results show that the initial titanium dioxide treated with zinc salt has good sphericity and small particle size, and the initial titanium dioxide treated with aluminum salt has a long strip shape, with richer surface hydroxyl, higher surface energy and thicker electric double layer structure. In addition, when the dosage of dispersant was 0.2% and the concentration of TiO2 was 700 g/L, the viscosity of the initial zinc salt slurry was 946 mPa·s, and the zeta potential was −23.3 mV. The viscosity of the initial aluminum salt slurry was 512 mPa·s, and the zeta potential was −31.2 mV. The results show that the slurry viscosity of the aluminum salt is lower, the dispersion is better, and the water wetting dispersion is better. The surface structure of titanium dioxide treated with different salts was analyzed, and the structure-activity relationship between surface structure and water dispersion was established, which provided reference and ideas for the development of high-end titanium dioxide.
  • loading
  • [1]
    Mathai S, Shaji P S. Different coating methods of titanium dioxide on metal substrates for orthopedic and dental applications: A review[J]. Asian Journal of Chemistey, 2021,34(1):9−17. doi: 10.14233/ajchem.2022.23512
    [2]
    Liang Ying, Huang Guohe, Xin Xiaying, et al. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review[J]. Journal of Materials Science & Technology, 2022,112(10):239−262.
    [3]
    Rengui G, Zhijuan H, Shanshan L, et al. A novel photoelectrochemical approach for efficient assessment of TiO2 pigments weatherability[J]. Powder Technology, 2021,380:334−340. doi: 10.1016/j.powtec.2020.11.004
    [4]
    Vyboishchik A V. Production methods temporary methods of production and application of pigments obtained from titanium dioxide[J]. IOP Conference Series: Materials Science and Engineering, 2018,451:012004. doi: 10.1088/1757-899X/451/1/012004
    [5]
    Lu Ruifang, Sun Qiang, Yang Fang, et al. Study on the effect of aluminum zinc composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022,43(3):14−19. (路瑞芳, 孙蔷, 杨芳, 等. 铝锌复合盐处理对金红石型TiO2质量的影响研究[J]. 钢铁钒钛, 2022,43(3):14−19.

    Lu Ruifang, Sun Qiang, Yang Fang, et al. Study on the effect of aluminum zinc composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 14−19.
    [6]
    Wang Z, Chen K, Zhu J, et al. Formation mechanism of rutile in sulfate process[J]. Materials Science and Engineering(IOP Conference Series), 2019,562:012002. doi: 10.1088/1757-899X/562/1/012002
    [7]
    Wu Jianchun, Lu Ruifang, Ma Weiping. Analysis of differences in titanium white treatment between zinc and aluminum salts[J]. Iron Steel Vanadium Titanium, 2020,41(2):29−32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29−32.

    Wu Jianchun, Lu Ruifang, Ma Weiping. Analysis of differences in titanium white treatment between zinc and aluminum salts[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 29−32.
    [8]
    Khusnun N F, Jalil A A, Abdullah T A T, et al. Influence of TiO2 dispersion on silica support toward enhanced amine assisted CO2 photoconversion to methanol[J]. Journal of CO2 Utilization, 2022,58:101901.
    [9]
    Zhang Yunsheng, Yin Hengbo, Wang Aili, et al. Deposition and characterization of binary Al2O3/SiO2 coating layers on the surfaces of rutile TiO2 and the pigmentary properties[J]. Applied Surface Science, 2010,257(4):1351−1360. doi: 10.1016/j.apsusc.2010.08.071
    [10]
    Liu Jiaqi, Zhang Fengmei, Dou Shengping, et al. Adsorption of serine at the anatase TiO2/water interface: A combined ATR-FTIR and DFT study[J]. Science of The Total Environment, 2022,807(1):150839.
    [11]
    Guo Junhuai, Shen Xingcan, Wu Liyan, et al. The accelerated crystal phase transition for rutile titania[J]. Chinese Journal of Applied Chemistry, 2003,20(7):647−653.
    [12]
    Hidalgo-Jimenez J, Wang Q, Edalati K, et al. Phase transformations, vacancy formation and variations of optical and photocatalytic properties in TiO2-ZnO composites by highpressure torsion[J]. International Journal of Plasticity, 2020,124:170−185. doi: 10.1016/j.ijplas.2019.08.010
    [13]
    Jin Bin. Discussion on the mechanism of titanium dioxide water dispersion[J]. Paint Industry, 2003(3):17−19. (金斌. 钛白粉水分散性机理的探讨[J]. 涂料工业, 2003(3):17−19.

    Jin Bin. Discussion on the mechanism of titanium dioxide water dispersion[J]. Paint Industry, 2003(3): 17−19.
    [14]
    Wang Haibo, Li Li, Luo Zhiqiang, et al. Study on the viscosity of zinc salt based titanium dioxide slurry [J]. Iron Steel Vanadium Titanium, 2019, 40(2): 61-65. (王海波, 李礼, 罗志强, 等. 锌盐类钛白初品浆料黏度研究[J]. 钢铁钒钛, 2019, 40(2): 61-65.

    Wang Haibo, Li Li, Luo Zhiqiang, et al. Study on the viscosity of zinc salt based titanium dioxide slurry [J]. Iron Steel Vanadium Titanium, 2019, 40(2): 61-65.
    [15]
    Wu Jianchun, Lu Ruifang, Sun Qiang, et al. Study on the effect of zinc salt treatment agent dosage on the performance of titanium dioxide[J]. Iron Steel Vanadium Titanium, 2022,43(5):35−39. (吴健春, 路瑞芳, 孙蔷, 等. 锌系盐处理剂加量对钛白性能的影响研究[J]. 钢铁钒钛, 2022,43(5):35−39.

    Wu Jianchun, Lu Ruifang, Sun Qiang, et al. Study on the effect of zinc salt treatment agent dosage on the performance of titanium dioxide[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 35−39.
    [16]
    Bedri E, Robert A Hunsicker, Gary W Simmons, et al. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation[J]. Langmuir, 2001,17(9):2664−2669. doi: 10.1021/la0015213
    [17]
    Manso M, Valadas S, Pessanha S, et al. Characterizing Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction, and Fourier transform infrared analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy. 2010, 65(4): 321-327.
    [18]
    Krebs F, Höfft O, Endres F. Investigations on the electrochemistry and reactivity of tantalum species in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide using X-ray photoelectron spectroscopy (in situ and ex-situ XPS)[J]. Applied Surface Science, 2023,608(15):155130.
    [19]
    Bruno R, Valérie F, Raphaël E, et al. XPS study of Ge-Se-Te surfaces functionalized with organosilanes[J]. Applied Surface Science, 2023,607(1):154921.
    [20]
    Viviana J G, Ester V, Beatriz V, et al. Eco-friendly mechanochemical synthesis of titania-graphene nanocomposites for pesticide photodegradation[J]. Separation and Purification Technology, 2022,289(15):120638.
    [21]
    Dan M, Tao E, Shuyi Y. Efficient removal of Cu(II) with graphene oxide-titanium dioxide/sodium alginate composite beads: Preparation, characterization, and adsorption mechanism[J]. Journal of Environmental Chemical Engineering, 2021,9(6):106501. doi: 10.1016/j.jece.2021.106501
    [22]
    Chi Mingyang, Sun Xueni, Achintya Sujan, et al. A quantitative XPS examination of UV induced surface modification of TiO2 sorbents for the increased saturation capacity of sulfur heterocycles[J]. Fuel, 2019,238:454−461. doi: 10.1016/j.fuel.2018.10.114
    [23]
    Liu Yongming, Shi Jianyu, Lu Qinqin, et al. Research progress of solid surface energy calculation based on Young's equation[J]. Material Guide, 2013,27(11):123−129. (刘永明, 施建宇, 鹿芹芹, 等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报, 2013,27(11):123−129.

    Liu Yongming, Shi Jianyu, Lu Qinqin, et al. Research progress of solid surface energy calculation based on Young's equation[J]. Material Guide, 2013, 27(11): 123−129.
    [24]
    Qin Sijia, Jin Yuankai,Yin Fuxing, et al. Can solid surface energy be a predictor of ice nucleation ability?[J]. Applied Surface Science, 2022,602:154193.
    [25]
    Tanaka T, Takayanagi T. Quantum reactive scattering calculations of H+F2 and Mu+F2 reactions on a new ab initio potential energy surface[J]. Chemical Physics Letters, 2010,496(4-6):248−253. doi: 10.1016/j.cplett.2010.07.070
    [26]
    Wei X, Jiang S, Klöckner A, et al. An integral equation method for the Cahn-Hilliard equation in the wetting problem[J]. Journal of Computational Physics, 2020,419:109521. doi: 10.1016/j.jcp.2020.109521
    [27]
    Xu Q, Zhao J, Xu H, et al. Dispersion of TiO2 particles and preparation of SiO2 coating layers on the surfaces of TiO2[J]. Materials Research Innovations, 2015,19(sup5):142−142-S5.145.
    [28]
    Paramasivam V, Beemaraj R K, Sundaram M, et al. Investigate the characterization and synthesis process of titanium dioxide nanoparticles[J]. Materials Today: Proceedings, 2022,52:1140−1142. doi: 10.1016/j.matpr.2021.11.009
    [29]
    Pandey F P, Singh S. Time resolved fluorescence and Raman properties, and zeta potential of zinc ferrite nanoparticles dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB)[J]. Journal of Molecular Liquids, 2020,315:113820. doi: 10.1016/j.molliq.2020.113820
    [30]
    Fortunato G, Tenniche A, Gottardo L, et al. Development of poly-(ethylene terephthalate) masterbatches incorporating highly dispersed TiO2 nanoparticles: Investigation of morphologies by optical and rheological procedures[J]. European Polymer Journal, 2014,57:75−82. doi: 10.1016/j.eurpolymj.2014.05.007
    [31]
    Kosmulski M, Mączka E. Zeta potential and particle size in dispersions of alumina in 50-50 w/w ethylene glycol-water mixture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022,654:130168. doi: 10.1016/j.colsurfa.2022.130168
    [32]
    Costello M J, Johnsen S, Gilliland K O, et al. Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory[J]. Investigative Ophthalmology & Visual Science, 2007,48(1):303−312.
    [33]
    Pazokifard S, Mirabedini S M, Esfandeh M, et al. Silane grafting of TiO2 nanoparticles: dispersibility and photoactivity in aqueous solutions[J]. Surface and Interface Analysis, 2012,44(1):41−47. doi: 10.1002/sia.3767
    [34]
    Wan Jiang, Wang Xiaohuan, Liu Zhiyong. Zeta potential study of bentonite water suspension system[J]. Non Metallic Minerals, 2017,40(4):23−25. (万江, 王晓焕, 刘志勇. 膨润土-水悬浮体系的Zeta电位研究[J]. 非金属矿, 2017,40(4):23−25.

    Wan Jiang, Wang Xiaohuan, Liu Zhiyong. Zeta potential study of bentonite water suspension system[J]. Non Metallic Minerals, 2017, 40(4): 23−25.
    [35]
    Zheng Caihua. Effect of WD-50 surface modification on zeta potential of powder[J]. China Ceramics, 2014,50(6):22−24. (郑彩华. WD-50表面改性对粉体Zeta电位的影响[J]. 中国陶瓷, 2014,50(6):22−24.

    Zheng Caihua. Effect of WD-50 surface modification on zeta potential of powder[J]. China Ceramics, 2014, 50(6): 22−24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (361) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return