| Citation: | Wang Li, Shi Zhaozhong, Cui Weina, Zhou Hua, Zhan Guirong, Liu Jin. Preparation of BiVO4/GO composites and their photocatalytic performance[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 51-57. doi: 10.7513/j.issn.1004-7638.2024.02.008 |
| [1] |
Jing L, Zhou W, Tian G, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts[J]. Chemical Society Reviews, 2013,42(24):9509−9549. doi: 10.1039/c3cs60176e
|
| [2] |
Kubacka A, Fernandez-Garcia M, Colon G. Advanced nanoarchitecturesfor solar photocatalytic applications[J]. Chemical Reviews, 2012,112(3):1555−1614. doi: 10.1021/cr100454n
|
| [3] |
Huang Xubo, Chen Min, Wang Yaru, et al. Amorphous NiSn and FeOOH as bifunctional co-catalysts for oxygen reduction and phenol (water) oxidation over BiVO4 under visible light[J]. Journal of Hazardous Materials, 2022, 421(5): 126650.
|
| [4] |
Prabakaran E, Sambaza S, Pillay K.TiO2-based nanocomposites for photodegradation of organic dyes[M]. In: Naushad M, Rajendran S, Lichtfouse E. (eds) Green Methods for Wastewater Treatment. Environmental Chemistry for a Sustainable World. Springer, Cham. 2020, 35: 151-184.
|
| [5] |
Kaliyaperumal A, Jaffar A. Au nanoparticles decorated sulfonated graphene-TiO2 nanocomposite for sunlight driven photocatalytic degradation of recalcitrant compound[J]. Solar Energy, 2020,211(3):1194−1205.
|
| [6] |
Wang Y L, Zhou M, He Y X. et al. In situ loading CuO quantum dots on TiO2 nanosheets as cocatalyst for improved photocatalytic water splitting[J]. Journal of Alloys and Compounds, 2020, 813: 152184-152190.
|
| [7] |
Komaraiah D, Radha E, Kalarikkal N, et al. Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts[J].Ceram. Int. 2019, 45(18): 25060–25068.
|
| [8] |
Yang R, Zhu Z, Hu C, et al. One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water[J]. Chemical Engineering Journal, 2020,390:124522. doi: 10.1016/j.cej.2020.124522
|
| [9] |
Gu J, Ban C, Meng J, et al. Construction of dual Z-scheme UNiMOF/BiVO4/S-C3N4 photocatalyst for visible-light photocatalytic tetracycline degradation and Cr(VI) reduction[J]. Applied Surface Science, 2023,611:155575−155590. doi: 10.1016/j.apsusc.2022.155575
|
| [10] |
Srinivasan N, Anbuchezhiyan M, Harish S, et al. Efficient catalytic activity of BiVO4 nanostructures by crystal facet regulation for environmental remediation[J]. Chemosphere, 2022,289:133097.1−14.
|
| [11] |
Tan Huiling, Rose Amal, Yun Hau Ng. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review[J]. Journal of Materials Chemistry A, 2017,5(32):16498−16521. doi: 10.1039/C7TA04441K
|
| [12] |
Peng X, Liu C, Zhao Z, et al. Construction of a Z-scheme g-C3N4/NBGO/BiVO4 heterostructure with visible-light driven photocatalytic degradation of tetracycline: efficiency, reaction pathway and mechanism[J]. Catalysis Science & Technology, 2022,12(4):1339−1358.
|
| [13] |
Si Y, Chen Y, Fu Y, et al. Hierarchical self-assembly of graphene-bridged on AgIO3/BiVO4: An efficient heterogeneous photocatalyst with enhanced photodegradation of organic pollutant under visible light[J]. Journal of Alloys and Compounds, 2020,831:1−10.
|
| [14] |
Liu D, Jiang Z, Zhu C, et al. Graphene-analogue BN-modified microspherical BiOI photocatalysts driven by visible light[J]. Dalton Transactions, 2016,45:2505−2516. doi: 10.1039/C5DT03408F
|
| [15] |
Nie G, Lu X, Lei J, et al. Facile and controlled synthesis of bismuth sulfide nanorods-reduced graphene oxide composites with enhanced supercapacitor performance[J]. Electrochimica Acta, 2015,154:24−30. doi: 10.1016/j.electacta.2014.12.090
|
| [16] |
Moral-Rodriguez A I, Quintana M, Leyva-Ramos R, et al. Novel and green synthesis of BiVO4 and GO/BiVO4 photocatalysts for efficient dyes degradation under blue LED illumination[J]. Ceramics International, 2022,48(1):1264−1276.
|
| [17] |
Zhao Y, Li R, Mu L, et al. The significance of crystal morphology controlling in semiconductor-based photocatalysis: A case study on BiVO4 photocatalyst[J]. Crystal Growth & Design, 2017,17(6):2923−2928.
|
| [18] |
Du Guixiang, Zhu Zhenping, Zhao Jianghong,et al. Particle-wire-tube mechanism for carbon nanotube evolution[J]. Journal of the American Chemical Society, 2006,128:15405−15414. doi: 10.1021/ja064151z
|
| [19] |
Yang C, Qin C, Zhong J, et al. Photocatalytic enhancement mechanism insight for BiVO4 induced by plasma treatment under different atmospheres[J]. Journal of Alloys and Compounds, 2021, 890: 161883.
|
| [20] |
Min Y L, He G Q, Xu Q J, et al. Self-assembled encapsulation of graphene oxide/Ag@AgCl as a Z-scheme photocatalytic system for pollutant removal[J]. Journal of Materials Chemistry A, 2014,2:1294−1301. doi: 10.1039/C3TA13687F
|
| [21] |
Xu Shichao , Zhu Tianzhe, Qiao Yang, et al. Fabrication of Z-scheme BiVO4/GO/g-C3N4 photocatalyst with efficient visble-light photocatalytic performance[J]. Journal of Inorganic Materials, 2020, 35(7): 839-846.
|
| [22] |
Moral Rodriguez A I, Quintana M, Leyva Ramos R, et al. Novel and green synthesis of BiVO4 and GO/BiVO4 photocatalysts for efficient dyes degradation under blue LED illumination[J]. Ceramics International, 2022,48:1264−1276. doi: 10.1016/j.ceramint.2021.09.211
|
| [23] |
Sanoop P K, Anas S, Ananthakumar S, et al. Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation[J]. Arabian Journal of Chemistry, 2016,9(S2):1618−1626.
|