Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Jia Haishen, Guo Wenjing, Zhao Lidong, Zhang Jilin, Ma Tianjiao, Zhang Wei. Rheological behaviours and constitutive models for titanium alloy TA31 at room temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 63-71. doi: 10.7513/j.issn.1004-7638.2024.02.010
Citation: Jia Haishen, Guo Wenjing, Zhao Lidong, Zhang Jilin, Ma Tianjiao, Zhang Wei. Rheological behaviours and constitutive models for titanium alloy TA31 at room temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 63-71. doi: 10.7513/j.issn.1004-7638.2024.02.010

Rheological behaviours and constitutive models for titanium alloy TA31 at room temperature and high strain rate

doi: 10.7513/j.issn.1004-7638.2024.02.010
More Information
  • Received Date: 2023-08-22
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • At room temperature, quasi-static compression and dynamic impact tests were conducted on titanium alloy TA31 by using UTM5305 universal testing machine and ALT1000 split Hopkinson pressure bar device. Based on the stress-strain curves attained from experiments, the strain hardening effect, strain rate strengthening effect, and adiabatic temperature rise softening effect were discussed. Based on the flow stress response characteristics of titanium alloy TA31, a new J-C constitutive model was established, which considers the coupling effect between strain and strain rate, as well as the influence of adiabatic temperature rise on its flow stress. The calculated values of the constitutive model were compared with the experimental values, and the prediction accuracy of the established constitutive model was evaluated by using two statistical parameters: correlation coefficient (R) and average relative error (AARE). The R and AARE of the model are 0.9887 and 0.63%, respectively. The results show that the new established J-C constitutive model can accurately describe the flow stress response behavior of titanium alloy TA31.
  • loading
  • [1]
    Batool S A, Ahmad A , Wadood A, et al. Development of lightweight aluminum-titanium alloys for aerospace applications[J]. Key Engineering Materials, 2018,778:22−27.
    [2]
    Leyens C, Peters M. Titanium and titanium alloy[M]. Weinheim: Wiley-VCH Verlag Gmb H&Co. KGa A, 2003.
    [3]
    Dipankar Banerjee J, Williams C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844−879. doi: 10.1016/j.actamat.2012.10.043
    [4]
    Zhang Jian, Zhang Meng, Cui Weicheng, et al. Elastic-plastic buckling of deep sea spherical pressure hulls[J]. Marine Structures, 2018,57:38−51. doi: 10.1016/j.marstruc.2017.09.007
    [5]
    Morrow B M, Lebensohn R A, Trujillo C P, et al. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar[J]. International Journal of Plasticity, 2016,82:225−240. doi: 10.1016/j.ijplas.2016.03.006
    [6]
    Bar Nurel, Moshe Nahmany, Nachum Frage, et al. Split hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting[J]. Additive Manufacturing, 2018,22:823−833. doi: 10.1016/j.addma.2018.06.001
    [7]
    Pavlo E Markovsky, Jacek Janiszewski, Dmytro G Savvakin, et al. Mechanical behavior of bilayer structures of Ti64 alloy and its composites with TiC or TiB under quasi-static and dynamic compression[J]. Materials & Design, 2022,223:111205.
    [8]
    Pavlo E Markovsky, Jacek Janiszewski, Olexander Dekhtyar, et al. Deformation mechanism and structural changes in the globular Ti-6Al-4V alloy under quasi-static and dynamic compression: To the question of the controlling phase in the deformation of α+β titanium alloys[J]. Crystals, 2022,12(5):645−645. doi: 10.3390/cryst12050645
    [9]
    Ran Chun, Chen Pengwan, Li Ling, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates[J]. Acta Armamentarii, 2017,38(9):1723−1728. (冉春, 陈鹏万, 李玲, 等. 中高应变率条件下TC18钛合金动态力学行为的试验研究[J]. 兵工学报, 2017,38(9):1723−1728. doi: 10.3969/j.issn.1000-1093.2017.09.008

    Ran Chun, Chen Pengwan, Li Ling, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates[J]. Acta Armamentarii, 2017, 38(9): 1723−1728. doi: 10.3969/j.issn.1000-1093.2017.09.008
    [10]
    Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021,35(3):201−208. (苏楠, 陈明和, 谢兰生, 等. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021,35(3):201−208.

    Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021, 35(3): 201−208.
    [11]
    Zhu Xinjie, Fan Qunbo, Yu Hong, et al. Dynamic mechanical properties and failure of Ti-4.5Mo-5.1A1-1.8Zr-1.1Sn-2.5Cr-2.9Zn alloy[J]. Rare Metal Materials and Engineering, 2020,49(4):1235−1241. (朱新杰, 范群波, 余洪, 等. Ti-4.5Mo-5.1Al-1.8Zr-1.1Sn-2.5Cr-2.9Zn钛合金的动态力学性能及失效研究[J]. 稀有金属材料与工程, 2020,49(4):1235−1241.

    Zhu Xinjie, Fan Qunbo, Yu Hong, et al. Dynamic mechanical properties and failure of Ti-4.5Mo-5.1A1-1.8Zr-1.1Sn-2.5Cr-2.9Zn alloy[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1235−1241.
    [12]
    Xu Xuefeng, Tayyeb Ali, Wang Lin, et al. Research on dynamic compression properties and deformation mechanism of Ti6321 titanium alloy[J]. Journal of Materials Research and Technology, 2020,9(5):11509−11516. doi: 10.1016/j.jmrt.2020.08.034
    [13]
    Peng Deping, Liu Xiao, He Dandan, et al. Adiabatic shear behavior and crack propagation mechanism on Ti6242 titanium alloy under high-speed impact loading[J]. Forging & Stamping Technology, 2022,47(9):224−229. (彭德平, 刘筱, 贺丹丹, 等. 高速冲击载荷下Ti6242钛合金的绝热剪切行为及裂纹扩展机理[J]. 锻压技术, 2022,47(9):224−229.

    Peng Deping, Liu Xiao, He Dandan, et al. Adiabatic shear behavior and crack propagation mechanism on Ti6242 titanium alloy under high-speed impact loading[J]. Forging & Stamping Technology, 2022, 47(9): 224−229.
    [14]
    Tian Ze, Wu Haijun, Tan Chengwen, et al. Dynamic mechanical properties of TC11 titanium alloys fabricated by wire arc additive manufacturing[J]. Materials, 2022,15(11):3917. doi: 10.3390/ma15113917
    [15]
    Shi Xiaohui, Zhao Cong, Cao Zuhan, et al. Mechanical behavior of α near titanium alloy under dynamic compression: Characterization and modeling[J]. Progress in Natural Science:Materials International, 2019,29(4):432−439. doi: 10.1016/j.pnsc.2019.07.001
    [16]
    Ning Zixuan, Wang Lin, Cheng Xingwang, et al. Dynamic response behavior of Ti-6321 titanium alloy with different microstructures under split hopkinson pressure bar loading[J]. Acta Armamentarii, 2021,42(4):862−870. (宁子轩, 王琳, 程兴旺, 等. 分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为[J]. 兵工学报, 2021,42(4):862−870. doi: 10.3969/j.issn.1000-1093.2021.04.020

    Ning Zixuan, Wang Lin, Cheng Xingwang, et al. Dynamic response behavior of Ti-6321 titanium alloy with different microstructures under split hopkinson pressure bar loading[J]. Acta Armamentarii, 2021, 42(4): 862−870. doi: 10.3969/j.issn.1000-1093.2021.04.020
    [17]
    Niu Qiulin, Chen Ming, Ming Weiwei. Study on the dynamic compressive mechanical behavior of TC17 Titanium alloy at high temperature and high strain rates[J]. Chinese Mechanical Engineering, 2017,28(23):2888−2892, 2897. (牛秋林, 陈明, 明伟伟. TC17钛合金在高温与高应变率下的动态压缩力学行为研究[J]. 中国机械工程, 2017,28(23):2888−2892, 2897. doi: 10.3969/j.issn.1004-132X.2017.23.017

    Niu Qiulin, Chen Ming, Ming Weiwei. Study on the dynamic compressive mechanical behavior of TC17 Titanium alloy at high temperature and high strain rates[J]. Chinese Mechanical Engineering, 2017, 28(23): 2888−2892, 2897. doi: 10.3969/j.issn.1004-132X.2017.23.017
    [18]
    Zhang L H, Rittel D, Osovski S. Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys[J]. Materials Science and Engineering: A, 2018,729:94−101. doi: 10.1016/j.msea.2018.05.007
    [19]
    Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. Method for determining material hardening index n[J]. Mechanical Strength, 1995,17(4):27−28. (孙学伟, 令永卓, 孙吉松, 等. 材料硬化指数n的确定方法[J]. 机械强度, 1995,17(4):27−28.

    Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. Method for determining material hardening index n[J]. Mechanical Strength, 1995, 17(4): 27−28.
    [20]
    Fang Jian, Wei Yijing, Wang Chengzhong. Analytical determination and mechanical analysis of tensile strain hardening index[J]. Chinese Journal of Plasticity Engineering, 2003,10(3):12−17. (方健, 魏毅静, 王承忠. 拉伸应变硬化指数的解析测定及力学分析[J]. 塑性工程学报, 2003,10(3):12−17. doi: 10.3969/j.issn.1007-2012.2003.03.003

    Fang Jian, Wei Yijing, Wang Chengzhong. Analytical determination and mechanical analysis of tensile strain hardening index[J]. Chinese Journal of Plasticity Engineering, 2003, 10(3): 12−17. doi: 10.3969/j.issn.1007-2012.2003.03.003
    [21]
    Yang X M, Guo H Z , Yao Z K. Strain rate sensitivity, temperature sensitivity, and strain hardening during the isothermal compression of BT25y alloy[J]. Journal of Materials Research, 2016,31(18):2863−2875.
    [22]
    Wang Lili. Progress in impact dynamics[M]. Hefei: University of Science and Technology of China Press, 1992. (王礼立. 冲击动力学进展[M]. 合肥: 中国科学技术大学出版社, 1992.

    Wang Lili. Progress in impact dynamics[M]. Hefei: University of Science and Technology of China Press, 1992.
    [23]
    Johnson G R , Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548.
    [24]
    Shu C, Cheng L, Xu Y. Research on Johnson-Cook cnstitutive model parameter estimation[J]. The Chinese Journal of Nonferrous Metals, 2020,30(5):1073−1083.
    [25]
    Liu Y, Li M, Ren X W, et al. Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli Armstrong, Johnson Cook and Arrhenius-type constitutive models[J]. Transactions of Nonferrous Metals Society of China, 2020,30(11):3031−3042. doi: 10.1016/S1003-6326(20)65440-1
    [26]
    Sheikhali A H, Morakkabati M. Constitutive modeling for hot working behavior of SP-700 titanium alloy[J]. Journal of Materials Engineering and Performance, 2019,28(10):6525−6537.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (358) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return