| Citation: | Jia Haishen, Guo Wenjing, Zhao Lidong, Zhang Jilin, Ma Tianjiao, Zhang Wei. Rheological behaviours and constitutive models for titanium alloy TA31 at room temperature and high strain rate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 63-71. doi: 10.7513/j.issn.1004-7638.2024.02.010 |
| [1] |
Batool S A, Ahmad A , Wadood A, et al. Development of lightweight aluminum-titanium alloys for aerospace applications[J]. Key Engineering Materials, 2018,778:22−27.
|
| [2] |
Leyens C, Peters M. Titanium and titanium alloy[M]. Weinheim: Wiley-VCH Verlag Gmb H&Co. KGa A, 2003.
|
| [3] |
Dipankar Banerjee J, Williams C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844−879. doi: 10.1016/j.actamat.2012.10.043
|
| [4] |
Zhang Jian, Zhang Meng, Cui Weicheng, et al. Elastic-plastic buckling of deep sea spherical pressure hulls[J]. Marine Structures, 2018,57:38−51. doi: 10.1016/j.marstruc.2017.09.007
|
| [5] |
Morrow B M, Lebensohn R A, Trujillo C P, et al. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar[J]. International Journal of Plasticity, 2016,82:225−240. doi: 10.1016/j.ijplas.2016.03.006
|
| [6] |
Bar Nurel, Moshe Nahmany, Nachum Frage, et al. Split hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting[J]. Additive Manufacturing, 2018,22:823−833. doi: 10.1016/j.addma.2018.06.001
|
| [7] |
Pavlo E Markovsky, Jacek Janiszewski, Dmytro G Savvakin, et al. Mechanical behavior of bilayer structures of Ti64 alloy and its composites with TiC or TiB under quasi-static and dynamic compression[J]. Materials & Design, 2022,223:111205.
|
| [8] |
Pavlo E Markovsky, Jacek Janiszewski, Olexander Dekhtyar, et al. Deformation mechanism and structural changes in the globular Ti-6Al-4V alloy under quasi-static and dynamic compression: To the question of the controlling phase in the deformation of α+β titanium alloys[J]. Crystals, 2022,12(5):645−645. doi: 10.3390/cryst12050645
|
| [9] |
Ran Chun, Chen Pengwan, Li Ling, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates[J]. Acta Armamentarii, 2017,38(9):1723−1728. (冉春, 陈鹏万, 李玲, 等. 中高应变率条件下TC18钛合金动态力学行为的试验研究[J]. 兵工学报, 2017,38(9):1723−1728. doi: 10.3969/j.issn.1000-1093.2017.09.008
Ran Chun, Chen Pengwan, Li Ling, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates[J]. Acta Armamentarii, 2017, 38(9): 1723−1728. doi: 10.3969/j.issn.1000-1093.2017.09.008
|
| [10] |
Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021,35(3):201−208. (苏楠, 陈明和, 谢兰生, 等. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021,35(3):201−208.
Su Nan, Chen Minghe, Xie Lansheng, et al. Dynamic mechanical characteristics and constitutive model of TC2 Ti-alloy[J]. Chinese Journal of Materials Research, 2021, 35(3): 201−208.
|
| [11] |
Zhu Xinjie, Fan Qunbo, Yu Hong, et al. Dynamic mechanical properties and failure of Ti-4.5Mo-5.1A1-1.8Zr-1.1Sn-2.5Cr-2.9Zn alloy[J]. Rare Metal Materials and Engineering, 2020,49(4):1235−1241. (朱新杰, 范群波, 余洪, 等. Ti-4.5Mo-5.1Al-1.8Zr-1.1Sn-2.5Cr-2.9Zn钛合金的动态力学性能及失效研究[J]. 稀有金属材料与工程, 2020,49(4):1235−1241.
Zhu Xinjie, Fan Qunbo, Yu Hong, et al. Dynamic mechanical properties and failure of Ti-4.5Mo-5.1A1-1.8Zr-1.1Sn-2.5Cr-2.9Zn alloy[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1235−1241.
|
| [12] |
Xu Xuefeng, Tayyeb Ali, Wang Lin, et al. Research on dynamic compression properties and deformation mechanism of Ti6321 titanium alloy[J]. Journal of Materials Research and Technology, 2020,9(5):11509−11516. doi: 10.1016/j.jmrt.2020.08.034
|
| [13] |
Peng Deping, Liu Xiao, He Dandan, et al. Adiabatic shear behavior and crack propagation mechanism on Ti6242 titanium alloy under high-speed impact loading[J]. Forging & Stamping Technology, 2022,47(9):224−229. (彭德平, 刘筱, 贺丹丹, 等. 高速冲击载荷下Ti6242钛合金的绝热剪切行为及裂纹扩展机理[J]. 锻压技术, 2022,47(9):224−229.
Peng Deping, Liu Xiao, He Dandan, et al. Adiabatic shear behavior and crack propagation mechanism on Ti6242 titanium alloy under high-speed impact loading[J]. Forging & Stamping Technology, 2022, 47(9): 224−229.
|
| [14] |
Tian Ze, Wu Haijun, Tan Chengwen, et al. Dynamic mechanical properties of TC11 titanium alloys fabricated by wire arc additive manufacturing[J]. Materials, 2022,15(11):3917. doi: 10.3390/ma15113917
|
| [15] |
Shi Xiaohui, Zhao Cong, Cao Zuhan, et al. Mechanical behavior of α near titanium alloy under dynamic compression: Characterization and modeling[J]. Progress in Natural Science:Materials International, 2019,29(4):432−439. doi: 10.1016/j.pnsc.2019.07.001
|
| [16] |
Ning Zixuan, Wang Lin, Cheng Xingwang, et al. Dynamic response behavior of Ti-6321 titanium alloy with different microstructures under split hopkinson pressure bar loading[J]. Acta Armamentarii, 2021,42(4):862−870. (宁子轩, 王琳, 程兴旺, 等. 分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为[J]. 兵工学报, 2021,42(4):862−870. doi: 10.3969/j.issn.1000-1093.2021.04.020
Ning Zixuan, Wang Lin, Cheng Xingwang, et al. Dynamic response behavior of Ti-6321 titanium alloy with different microstructures under split hopkinson pressure bar loading[J]. Acta Armamentarii, 2021, 42(4): 862−870. doi: 10.3969/j.issn.1000-1093.2021.04.020
|
| [17] |
Niu Qiulin, Chen Ming, Ming Weiwei. Study on the dynamic compressive mechanical behavior of TC17 Titanium alloy at high temperature and high strain rates[J]. Chinese Mechanical Engineering, 2017,28(23):2888−2892, 2897. (牛秋林, 陈明, 明伟伟. TC17钛合金在高温与高应变率下的动态压缩力学行为研究[J]. 中国机械工程, 2017,28(23):2888−2892, 2897. doi: 10.3969/j.issn.1004-132X.2017.23.017
Niu Qiulin, Chen Ming, Ming Weiwei. Study on the dynamic compressive mechanical behavior of TC17 Titanium alloy at high temperature and high strain rates[J]. Chinese Mechanical Engineering, 2017, 28(23): 2888−2892, 2897. doi: 10.3969/j.issn.1004-132X.2017.23.017
|
| [18] |
Zhang L H, Rittel D, Osovski S. Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys[J]. Materials Science and Engineering: A, 2018,729:94−101. doi: 10.1016/j.msea.2018.05.007
|
| [19] |
Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. Method for determining material hardening index n[J]. Mechanical Strength, 1995,17(4):27−28. (孙学伟, 令永卓, 孙吉松, 等. 材料硬化指数n的确定方法[J]. 机械强度, 1995,17(4):27−28.
Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. Method for determining material hardening index n[J]. Mechanical Strength, 1995, 17(4): 27−28.
|
| [20] |
Fang Jian, Wei Yijing, Wang Chengzhong. Analytical determination and mechanical analysis of tensile strain hardening index[J]. Chinese Journal of Plasticity Engineering, 2003,10(3):12−17. (方健, 魏毅静, 王承忠. 拉伸应变硬化指数的解析测定及力学分析[J]. 塑性工程学报, 2003,10(3):12−17. doi: 10.3969/j.issn.1007-2012.2003.03.003
Fang Jian, Wei Yijing, Wang Chengzhong. Analytical determination and mechanical analysis of tensile strain hardening index[J]. Chinese Journal of Plasticity Engineering, 2003, 10(3): 12−17. doi: 10.3969/j.issn.1007-2012.2003.03.003
|
| [21] |
Yang X M, Guo H Z , Yao Z K. Strain rate sensitivity, temperature sensitivity, and strain hardening during the isothermal compression of BT25y alloy[J]. Journal of Materials Research, 2016,31(18):2863−2875.
|
| [22] |
Wang Lili. Progress in impact dynamics[M]. Hefei: University of Science and Technology of China Press, 1992. (王礼立. 冲击动力学进展[M]. 合肥: 中国科学技术大学出版社, 1992.
Wang Lili. Progress in impact dynamics[M]. Hefei: University of Science and Technology of China Press, 1992.
|
| [23] |
Johnson G R , Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548.
|
| [24] |
Shu C, Cheng L, Xu Y. Research on Johnson-Cook cnstitutive model parameter estimation[J]. The Chinese Journal of Nonferrous Metals, 2020,30(5):1073−1083.
|
| [25] |
Liu Y, Li M, Ren X W, et al. Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli Armstrong, Johnson Cook and Arrhenius-type constitutive models[J]. Transactions of Nonferrous Metals Society of China, 2020,30(11):3031−3042. doi: 10.1016/S1003-6326(20)65440-1
|
| [26] |
Sheikhali A H, Morakkabati M. Constitutive modeling for hot working behavior of SP-700 titanium alloy[J]. Journal of Materials Engineering and Performance, 2019,28(10):6525−6537.
|