| Citation: | Liu Jingjing. Synthesis and properties of the BiVO4 based composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 72-78, 124. doi: 10.7513/j.issn.1004-7638.2024.02.011 |
| [1] |
Monfort O, Plesch Gustav. Bismuth vanadate-based semiconductor photocatalysts: A short critical review on the efficiency and the mechanism of photodegradation of organic pollutants[J]. Environmental Science and Pollution Research, 2018,25:19362−19379. doi: 10.1007/s11356-018-2437-9
|
| [2] |
Li H, Cheng B, Zhang J, et al. Recent advances in the application of bismuth-based catalysts for degrading environmental emerging organic contaminants through photocatalysis: A review[J]. Journal of Environmental Chemical Engineering, 2023,11:110371. doi: 10.1016/j.jece.2023.110371
|
| [3] |
Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of the American Chemical Society, 1999,121(49):11459−11467. doi: 10.1021/ja992541y
|
| [4] |
Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chemistry of Materials, 2001,13(12):4624−4628. doi: 10.1021/cm0103390
|
| [5] |
Liu Jingjing, Zhang Zelan, Li Shi, et al. Research progress on modification of bismuth vanadate visible light photocatalytic materials[J]. Materials Reports, 2021,35(17):17163−17177, 17184. (刘景景, 张泽兰, 李诗, 等. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021,35(17):17163−17177, 17184.
Liu Jingjing, Zhang Zelan, Li Shi, et al. Research progress on modification of bismuth vanadate visible light photocatalytic materials[J]. Materials Reports, 2021, 35(17): 17163−17177, 17184.
|
| [6] |
Song Lingjun, Pang Youyong, Zheng Yanjun, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method[J]. Journal of Alloys and Compounds, 2017,710:375−382.
|
| [7] |
Tayyebeh Soltani, Ahmad Tayyebi, Byeong Kyu Lee. BiFeO3/BiVO4 p-n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation[J]. Catalysis Today, 2020,340:188−196. doi: 10.1016/j.cattod.2018.09.030
|
| [8] |
Caroline H Claudino, Maria Kuznetsova, Bárbara S Rodrigues, et al. Facile one-pot microwave-assisted synthesis of tungsten-doped BiVO4/WO3 heterojunctions with enhanced photocatalytic activity[J]. Materials Research Bulletin, 2020,125:110783. doi: 10.1016/j.materresbull.2020.110783
|
| [9] |
Li Q, Wang M, He J, et al. In situ synthesis of core-shell like BiVO4/BiOCl heterojunction with excellent visible-light photocatalytic activity[J]. Optical Materials, 2023,144:114266. doi: 10.1016/j.optmat.2023.114266
|
| [10] |
Hao Wei, Wang Jie, Xu Shengyuan, et al. A review of preparation and application of BiOCl as photocatalysts[J]. Materials Reports, 2023,37(20):52−61. (郝玮, 王杰, 胥生元, 等. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023,37(20):52−61. doi: 10.11896/cldb.22030313
Hao Wei, Wang Jie, Xu Shengyuan, et al. A review of preparation and application of BiOCl as photocatalysts[J]. Materials Reports, 2023, 37(20): 52−61. doi: 10.11896/cldb.22030313
|
| [11] |
Anand P, Verma A, Hong Y, et al. Morphological and elemental tuning of BiOCl/BiVO4 heterostructure for uric acid electrochemical sensor and antibiotic photocatalytic degradation[J]. Chemosphere, 2023,310:136847. doi: 10.1016/j.chemosphere.2022.136847
|
| [12] |
Shan L, Liu Y, Suriyaprakash J, et al. Highly efficient photocatalytic activities, band alignment of BiVO4/BiOCl {001} prepared by in situ chemical transformation[J]. Journal of Molecular Catalysis A: Chemical, 2016,411:179−187. doi: 10.1016/j.molcata.2015.10.032
|
| [13] |
Thirumalraj B, Jaihindh D P, Alaswad S O, et al. Fabricating BiOCl/BiVO4 nanosheets wrapped in a graphene oxide heterojunction composite for detection of an antihistamine in biological samples[J]. Environmental Research, 2022,212:113636. doi: 10.1016/j.envres.2022.113636
|
| [14] |
Ma X, Ma Z, Liao T, et al. Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation[J]. Journal of Alloys and Compounds, 2017,702:68−74. doi: 10.1016/j.jallcom.2017.01.214
|
| [15] |
Cao J, Zhou C, Lin H, et al. Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity[J]. Applied Surface Science, 2013,284:263−269. doi: 10.1016/j.apsusc.2013.07.092
|
| [16] |
Razavi Khosroshahi H, Mohammadzadeh S, Hojamberdiev M, et al. BiVO4/BiOX [1](X = F, Cl, Br, I) heterojunctions for degrading organic dye under visible light[J]. Advanced Powder Technology, 2019,30:1290−1296. doi: 10.1016/j.apt.2019.04.002
|
| [17] |
Lü D, Zhang D, Pu X, et al. One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties[J]. Separation and Purification Technology, 2017,174:97−103. doi: 10.1016/j.seppur.2016.10.010
|
| [18] |
Liu Jingjing, Yan Yue’e. Synthesis and properties of the diatomite/BiVO4 composite photocatalysts[J]. Iron Steel Vanadium Titanium, 2023,44(1):49−55. (刘景景, 闫月娥. 硅藻土/BiVO4复合光催化剂的制备及性能研究[J]. 钢铁钒钛, 2023,44(1):49−55. doi: 10.7513/j.issn.1004-7638.2023.01.010
Liu Jingjing, Yan Yue’e. Synthesis and properties of the diatomite/BiVO4 composite photocatalysts[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 49−55. doi: 10.7513/j.issn.1004-7638.2023.01.010
|
| [19] |
He Z, Shi Y, Gao C, et al. BiOCl/BiVO4 p−n heterojunction with enhanced photocatalytic activity under visible-light irradiation[J]. The Journal of Physical Chemistry C, 2014,118:389−398. doi: 10.1021/jp409598s
|
| [20] |
Yang C, Li F, Li T. A one-step ionic liquid-assisted ultrasonic method for the preparation of BiOCl/m-BiVO4 heterojunctions with enhanced visible light photocatalytic activity[J]. Cryst Eng Comm, 2015,17:7676−7683. doi: 10.1039/C5CE01312G
|
| [21] |
Hu Mingyue, Li Dongya, Sun Jingyu, et al. Preparation of BiOCl with rose-like hierarchical structure and its photocatalytic activity for RhB degradation[J]. Environmental Protection and Chemical Industry, 2018,38(4):419−424. (胡明玥, 李东亚, 孙靖宇, 等. 玫瑰花状分级结构BiOCl的制备及其光降解罗丹明B的性能[J]. 化工环保, 2018,38(4):419−424. doi: 10.3969/j.issn.1006-1878.2018.04.010
Hu Mingyue, Li Dongya, Sun Jingyu, et al. Preparation of BiOCl with rose-like hierarchical structure and its photocatalytic activity for RhB degradation[J]. Environmental Protection and Chemical Industry, 2018, 38(4): 419−424. doi: 10.3969/j.issn.1006-1878.2018.04.010
|