Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Liu Jingjing. Synthesis and properties of the BiVO4 based composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 72-78, 124. doi: 10.7513/j.issn.1004-7638.2024.02.011
Citation: Liu Jingjing. Synthesis and properties of the BiVO4 based composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 72-78, 124. doi: 10.7513/j.issn.1004-7638.2024.02.011

Synthesis and properties of the BiVO4 based composite photocatalysts

doi: 10.7513/j.issn.1004-7638.2024.02.011
More Information
  • Received Date: 2023-11-05
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • Binary BiOCl/BiVO4 and ternary BiOCl/BiVO4/diatomite photocatalysts were in situ prepared by liquid phase precipitation using bismuth nitrate, ammonium metadadate, potassium chloride and diatomite as raw materials, and the phase structure and photocatalytic properties of the composites were characterized. The results show that BiOCl/BiVO4 consists of monoclinic BiVO4 and BiOCl, and BiOCl/BiVO4/diatomite consists of monoclinic BiVO4, BiOCl and SiO2. The increase of the calcination temperature can promote the conversion of BiVO4 into BiOCl. Compared with BiVO4, the photodegradation efficiencies of the composites are enhanced significantly, and the optimum calcination temperature is 450 ℃. The photodegradation efficiencies of BiOCl/BiVO4 at 1.5 h and BiOCl/BiVO4/diatomite at 2.5 h are 99.05% and 100%, which is 3.05 and 2.68 times that of the BiVO4 under the same conditions, respectively, indicating that the introduction of BiOCl or BiOCl/diatomite into BiVO4 can effectively improve the photocatalytic activity. The enhanced photocatalytic activity of the composites can be ascribed to the p-n heterojunction formed between BiOCl and BiVO4 and the special layered structure of BiOCl, which improve the adsorption performance for rhodamine B, effectively inhibit the electron-hole pairs recombination, and accelerate the separation and transfer of charge carriers, leading to potential application prospects in the environmental purification.
  • loading
  • [1]
    Monfort O, Plesch Gustav. Bismuth vanadate-based semiconductor photocatalysts: A short critical review on the efficiency and the mechanism of photodegradation of organic pollutants[J]. Environmental Science and Pollution Research, 2018,25:19362−19379. doi: 10.1007/s11356-018-2437-9
    [2]
    Li H, Cheng B, Zhang J, et al. Recent advances in the application of bismuth-based catalysts for degrading environmental emerging organic contaminants through photocatalysis: A review[J]. Journal of Environmental Chemical Engineering, 2023,11:110371. doi: 10.1016/j.jece.2023.110371
    [3]
    Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of the American Chemical Society, 1999,121(49):11459−11467. doi: 10.1021/ja992541y
    [4]
    Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chemistry of Materials, 2001,13(12):4624−4628. doi: 10.1021/cm0103390
    [5]
    Liu Jingjing, Zhang Zelan, Li Shi, et al. Research progress on modification of bismuth vanadate visible light photocatalytic materials[J]. Materials Reports, 2021,35(17):17163−17177, 17184. (刘景景, 张泽兰, 李诗, 等. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021,35(17):17163−17177, 17184.

    Liu Jingjing, Zhang Zelan, Li Shi, et al. Research progress on modification of bismuth vanadate visible light photocatalytic materials[J]. Materials Reports, 2021, 35(17): 17163−17177, 17184.
    [6]
    Song Lingjun, Pang Youyong, Zheng Yanjun, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method[J]. Journal of Alloys and Compounds, 2017,710:375−382.
    [7]
    Tayyebeh Soltani, Ahmad Tayyebi, Byeong Kyu Lee. BiFeO3/BiVO4 p-n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation[J]. Catalysis Today, 2020,340:188−196. doi: 10.1016/j.cattod.2018.09.030
    [8]
    Caroline H Claudino, Maria Kuznetsova, Bárbara S Rodrigues, et al. Facile one-pot microwave-assisted synthesis of tungsten-doped BiVO4/WO3 heterojunctions with enhanced photocatalytic activity[J]. Materials Research Bulletin, 2020,125:110783. doi: 10.1016/j.materresbull.2020.110783
    [9]
    Li Q, Wang M, He J, et al. In situ synthesis of core-shell like BiVO4/BiOCl heterojunction with excellent visible-light photocatalytic activity[J]. Optical Materials, 2023,144:114266. doi: 10.1016/j.optmat.2023.114266
    [10]
    Hao Wei, Wang Jie, Xu Shengyuan, et al. A review of preparation and application of BiOCl as photocatalysts[J]. Materials Reports, 2023,37(20):52−61. (郝玮, 王杰, 胥生元, 等. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023,37(20):52−61. doi: 10.11896/cldb.22030313

    Hao Wei, Wang Jie, Xu Shengyuan, et al. A review of preparation and application of BiOCl as photocatalysts[J]. Materials Reports, 2023, 37(20): 52−61. doi: 10.11896/cldb.22030313
    [11]
    Anand P, Verma A, Hong Y, et al. Morphological and elemental tuning of BiOCl/BiVO4 heterostructure for uric acid electrochemical sensor and antibiotic photocatalytic degradation[J]. Chemosphere, 2023,310:136847. doi: 10.1016/j.chemosphere.2022.136847
    [12]
    Shan L, Liu Y, Suriyaprakash J, et al. Highly efficient photocatalytic activities, band alignment of BiVO4/BiOCl {001} prepared by in situ chemical transformation[J]. Journal of Molecular Catalysis A: Chemical, 2016,411:179−187. doi: 10.1016/j.molcata.2015.10.032
    [13]
    Thirumalraj B, Jaihindh D P, Alaswad S O, et al. Fabricating BiOCl/BiVO4 nanosheets wrapped in a graphene oxide heterojunction composite for detection of an antihistamine in biological samples[J]. Environmental Research, 2022,212:113636. doi: 10.1016/j.envres.2022.113636
    [14]
    Ma X, Ma Z, Liao T, et al. Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation[J]. Journal of Alloys and Compounds, 2017,702:68−74. doi: 10.1016/j.jallcom.2017.01.214
    [15]
    Cao J, Zhou C, Lin H, et al. Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity[J]. Applied Surface Science, 2013,284:263−269. doi: 10.1016/j.apsusc.2013.07.092
    [16]
    Razavi Khosroshahi H, Mohammadzadeh S, Hojamberdiev M, et al. BiVO4/BiOX [1](X = F, Cl, Br, I) heterojunctions for degrading organic dye under visible light[J]. Advanced Powder Technology, 2019,30:1290−1296. doi: 10.1016/j.apt.2019.04.002
    [17]
    Lü D, Zhang D, Pu X, et al. One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties[J]. Separation and Purification Technology, 2017,174:97−103. doi: 10.1016/j.seppur.2016.10.010
    [18]
    Liu Jingjing, Yan Yue’e. Synthesis and properties of the diatomite/BiVO4 composite photocatalysts[J]. Iron Steel Vanadium Titanium, 2023,44(1):49−55. (刘景景, 闫月娥. 硅藻土/BiVO4复合光催化剂的制备及性能研究[J]. 钢铁钒钛, 2023,44(1):49−55. doi: 10.7513/j.issn.1004-7638.2023.01.010

    Liu Jingjing, Yan Yue’e. Synthesis and properties of the diatomite/BiVO4 composite photocatalysts[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 49−55. doi: 10.7513/j.issn.1004-7638.2023.01.010
    [19]
    He Z, Shi Y, Gao C, et al. BiOCl/BiVO4 p−n heterojunction with enhanced photocatalytic activity under visible-light irradiation[J]. The Journal of Physical Chemistry C, 2014,118:389−398. doi: 10.1021/jp409598s
    [20]
    Yang C, Li F, Li T. A one-step ionic liquid-assisted ultrasonic method for the preparation of BiOCl/m-BiVO4 heterojunctions with enhanced visible light photocatalytic activity[J]. Cryst Eng Comm, 2015,17:7676−7683. doi: 10.1039/C5CE01312G
    [21]
    Hu Mingyue, Li Dongya, Sun Jingyu, et al. Preparation of BiOCl with rose-like hierarchical structure and its photocatalytic activity for RhB degradation[J]. Environmental Protection and Chemical Industry, 2018,38(4):419−424. (胡明玥, 李东亚, 孙靖宇, 等. 玫瑰花状分级结构BiOCl的制备及其光降解罗丹明B的性能[J]. 化工环保, 2018,38(4):419−424. doi: 10.3969/j.issn.1006-1878.2018.04.010

    Hu Mingyue, Li Dongya, Sun Jingyu, et al. Preparation of BiOCl with rose-like hierarchical structure and its photocatalytic activity for RhB degradation[J]. Environmental Protection and Chemical Industry, 2018, 38(4): 419−424. doi: 10.3969/j.issn.1006-1878.2018.04.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (291) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return