| Citation: | Shi Dongsheng, Li Hanghang, Zhang Peng, Han Ping, He Peiyuan. Experimental study on granulated blast furnace slag asfine aggregate self-compacting concrete[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 108-114. doi: 10.7513/j.issn.1004-7638.2024.02.016 |
| [1] |
He Liangyu, Qiao Lige, Zhao Rixu, et al. Study on the preparation of high performance mortar with steel slag as cementitious material and fine aggregate[J]. Comprehensive Utilization of Minerals, 2019(6):94−100. (何良玉, 谯理格, 赵日煦, 等. 钢渣作胶凝材料和细集料制备高性能砂浆的研究[J]. 矿产综合利用, 2019(6):94−100.
He Liangyu, Qiao Lige, Zhao Rixu, et al. Study on the preparation of high performance mortar with steel slag as cementitious material and fine aggregate[J]. Comprehensive Utilization of Minerals, 2019(6): 94−100.
|
| [2] |
Liu Yang, Zhang Chunxia. Comprehensive utilization status and development trend of iron and steel slag[J]. Comprehensive Utilization of Minerals, 2019(2):21−25. (刘洋, 张春霞. 钢铁渣的综合利用现状及发展趋势[J]. 矿产综合利用, 2019(2):21−25.
Liu Yang, Zhang Chunxia. Comprehensive utilization status and development trend of iron and steel slag[J]. Comprehensive Utilization of Minerals, 2019(2): 21−25.
|
| [3] |
Liu Shulong, Li Gongcheng, Liu Guolei, et al. Research on early strength characteristics and microstructure evolution of backfill based on blast furnace slag cementitious materials[J]. Mining Research and Development, 2020,40(11):71−75. (刘树龙, 李公成, 刘国磊, 等. 基于高炉矿渣胶凝材料的充填体早期强度特性研究及微观结构演化[J]. 矿业研究与开发, 2020,40(11):71−75.
Liu Shulong, Li Gongcheng, Liu Guolei, et al. Research on early strength characteristics and microstructure evolution of backfill based on blast furnace slag cementitious materials[J]. Mining Research and Development, 2020, 40(11): 71−75.
|
| [4] |
Wang Lijuan, Liu Yujuan. Experimental study on fluidity and mechanical properties of alkali-activated slag/fly ash system[J]. Mining Research and Development, 2022,42(6):141−147. (王丽娟, 刘玉娟. 碱激发矿渣/粉煤灰体系流动性及力学性能试验研究[J]. 矿业研究与开发, 2022,42(6):141−147.
Wang Lijuan, Liu Yujuan. Experimental study on fluidity and mechanical properties of alkali-activated slag/fly ash system[J]. Mining Research and Development, 2022, 42(6): 141−147.
|
| [5] |
Alzaza A, Ohenoja K, Shaikh F U A, et al. Mechanical and durability properties of C-S-H-seeded cement mortar cured at fluctuating low temperatures with granulated blast furnace slag as fine aggregates[J]. Journal of Building Engineering, 2022(57):14−21.
|
| [6] |
Hao Baichuan, Li Ziyue, Jia Dongfang, et al. Comprehensive utilization of titanium-bearing blast furnace slag[J]. Comprehensive Utilization of Minerals, 2020(6):1−6. (郝百川, 李子越, 贾东方, 等. 含钛高炉渣的综合利用[J]. 矿产综合利用, 2020(6):1−6.
Hao Baichuan, Li Ziyue, Jia Dongfang, et al. Comprehensive utilization of titanium-bearing blast furnace slag[J]. Comprehensive Utilization of Minerals, 2020(6): 1−6.
|
| [7] |
Yang He, Chen Wei, Ma Shuangshi, et al. Experimental study on mechanical properties of high-titanium heavy slag tunnel shotcrete.[J]. Iron Steel Vanadium Titanium, 2023,44(3):118−122. (杨贺, 陈伟, 马双狮, 等. 高钛重矿渣隧道喷射混凝土力学性能试验研究[J]. 钢铁钒钛, 2023,44(3):118−122.
Yang He, Chen Wei, Ma Shuangshi, et al. Experimental study on mechanical properties of high-titanium heavy slag tunnel shotcrete.[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118−122.
|
| [8] |
Wang Jie, Li Gen, Liang Yuehua, et al. Experimental study on the prediction model of carbonization depth in high Ti-bearing blast furnace slag concrete[J]. Iron Steel Vanadium Titanium, 2022,43(2):101−106. (汪杰, 李根, 梁月华, 等. 高钛型高炉渣混凝土碳化深度试验研究[J]. 钢铁钒钛, 2022,43(2):101−106.
Wang Jie, Li Gen, Liang Yuehua, et al. Experimental study on the prediction model of carbonization depth in high Ti-bearing blast furnace slag concrete[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 101−106.
|
| [9] |
Osman Hulusi Oren, Aliakbar Gholampour, Osman Gencel, et al. Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate[J]. Construction and Building Materials, 2020, 238:117774.
|
| [10] |
Kolisetty R K, Chore H S. Utilization of waste materials in construction activities: A green concept[C]// International Conference on Green Computing and Technology, 2013.
|
| [11] |
Hajime O, Masahiro O. Self-compacting concrete: development, present use and future[C]//First International RILEM Symposium on Self-Compacting Concrete, Rilem Publications SARL, 1999:3-14.
|
| [12] |
Ozawa K, Maekawa K, Kunishima M, et al. Development of high performance concrete based on the durability design of concrete structures[C]// The Second East-Asia and Pacific Concrete on Structural Engineering and Construction (EASEC-2), Tokyo, Japan, 1989:445-450.
|
| [13] |
He Xiang, Qiao Xiantao, Yu Peng, et al. Effect of industrial solid waste powder on the properties of self-compacting high performance concrete[J]. Silicate Bulletin, 2023,42(11):4017−4026. (何翔, 乔险涛, 喻鹏, 等. 工业固废粉末对自密实高性能混凝土性能的影响[J]. 硅酸盐通报, 2023,42(11):4017−4026.
He Xiang, Qiao Xiantao, Yu Peng, et al. Effect of industrial solid waste powder on the properties of self-compacting high performance concrete[J]. Silicate Bulletin, 2023, 42(11): 4017−4026.
|
| [14] |
Zhang Lingling, Wang Haichao, Jiang Peixian, et al. Experimental study on the effect of particle shape of solid waste aggregate on the mechanical properties of self-compacting rockfill concrete[J]. Concrete, 2023(10):201−205. (张灵灵, 王海超, 姜佩弦, 等. 固废骨料粒形对自密实堆石混凝土力学性能的试验研究[J]. 混凝土, 2023(10):201−205.
Zhang Lingling, Wang Haichao, Jiang Peixian, et al. Experimental study on the effect of particle shape of solid waste aggregate on the mechanical properties of self-compacting rockfill concrete[J]. Concrete, 2023(10): 201−205.
|
| [15] |
Chen Jiankui, Wang Dongmin. A new method for mix proportion design of high performance concrete (HPC) -total calculation method[J]. Journal of Silicate, 2000(2):194−198. (陈建奎, 王栋民. 高性能混凝土(HPC)配合比设计新法——全计算法[J]. 硅酸盐学报, 2000(2):194−198.
Chen Jiankui, Wang Dongmin. A new method for mix proportion design of high performance concrete (HPC) -total calculation method[J]. Journal of Silicate, 2000(2): 194−198.
|
| [16] |
Wang Zhen, Li Huajian, Yi Zhonglai, et al. New research progress on the stability mechanism and influencing factors of self-compacting concrete[J]. Material introduction, 2017,31(S1):379−383. (王振, 李化建, 易忠来, 等. 自密实混凝土稳定性机理及其影响因素研究新进展[J]. 材料导报, 2017,31(S1):379−383.
Wang Zhen, Li Huajian, Yi Zhonglai, et al. New research progress on the stability mechanism and influencing factors of self-compacting concrete[J]. Material introduction, 2017, 31(S1): 379−383.
|
| [17] |
Wu Z M, Zhang Y G, Zheng J J, et al. An experimental study on the workability of self-compacting lightweight concrete[J]. Construction and Building Materials, 2009,23(5):2087−2092. doi: 10.1016/j.conbuildmat.2008.08.023
|
| [18] |
Pal S C, Mukherjee A, Pathak S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete[J]. Cement and Concrete Research, 2003,33(9):1481−1486. doi: 10.1016/S0008-8846(03)00062-0
|
| [19] |
Liu Sifeng. Grey system theory and its application [M]. Beijing:Science Press, 2010. (刘思峰. 灰色系统理论及其应用[M]. 北京:科学出版社, 2010.
Liu Sifeng. Grey system theory and its application [M]. Beijing: Science Press, 2010.
|
| [20] |
Li B, Cai L, Zhu W. Predicting service life of concrete structure exposed to sulfuric acid environment by grey system theory [J]. International Journal of Civil Engineering, 2018, 16(9): 1017-1027.
|