Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Shi Dongsheng, Li Hanghang, Zhang Peng, Han Ping, He Peiyuan. Experimental study on granulated blast furnace slag asfine aggregate self-compacting concrete[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 108-114. doi: 10.7513/j.issn.1004-7638.2024.02.016
Citation: Shi Dongsheng, Li Hanghang, Zhang Peng, Han Ping, He Peiyuan. Experimental study on granulated blast furnace slag asfine aggregate self-compacting concrete[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 108-114. doi: 10.7513/j.issn.1004-7638.2024.02.016

Experimental study on granulated blast furnace slag asfine aggregate self-compacting concrete

doi: 10.7513/j.issn.1004-7638.2024.02.016
More Information
  • Received Date: 2023-12-30
    Available Online: 2024-04-30
  • Publish Date: 2024-04-30
  • The mix ratio of granulated blast furnace slag self-compacting concrete was designed based on the full calculation method. By studying its working performance to determine the final mix ratio and test its compressive strength, and then use the GM (1,1) grey prediction model can predict its compressive strength. The results show that self-compacting concrete that meets the requirements of working performance can be prepared by reasonably adjusting the sand ratio and the amount of admixture. The compressive strength of the 7 day age shows a decreasing trend with the increase of the sand replacement rate. The compressive strength and strength growth rate of granulated blast furnace slag self-compacting concrete at 28-180 days are higher than those of ordinary self-compacting concrete. This is because the granulated blast furnace slag has certain hydraulicity, which makes its strength change accordingly. GM (1,1) grey prediction model can better predict the compressive strength.
  • loading
  • [1]
    He Liangyu, Qiao Lige, Zhao Rixu, et al. Study on the preparation of high performance mortar with steel slag as cementitious material and fine aggregate[J]. Comprehensive Utilization of Minerals, 2019(6):94−100. (何良玉, 谯理格, 赵日煦, 等. 钢渣作胶凝材料和细集料制备高性能砂浆的研究[J]. 矿产综合利用, 2019(6):94−100.

    He Liangyu, Qiao Lige, Zhao Rixu, et al. Study on the preparation of high performance mortar with steel slag as cementitious material and fine aggregate[J]. Comprehensive Utilization of Minerals, 2019(6): 94−100.
    [2]
    Liu Yang, Zhang Chunxia. Comprehensive utilization status and development trend of iron and steel slag[J]. Comprehensive Utilization of Minerals, 2019(2):21−25. (刘洋, 张春霞. 钢铁渣的综合利用现状及发展趋势[J]. 矿产综合利用, 2019(2):21−25.

    Liu Yang, Zhang Chunxia. Comprehensive utilization status and development trend of iron and steel slag[J]. Comprehensive Utilization of Minerals, 2019(2): 21−25.
    [3]
    Liu Shulong, Li Gongcheng, Liu Guolei, et al. Research on early strength characteristics and microstructure evolution of backfill based on blast furnace slag cementitious materials[J]. Mining Research and Development, 2020,40(11):71−75. (刘树龙, 李公成, 刘国磊, 等. 基于高炉矿渣胶凝材料的充填体早期强度特性研究及微观结构演化[J]. 矿业研究与开发, 2020,40(11):71−75.

    Liu Shulong, Li Gongcheng, Liu Guolei, et al. Research on early strength characteristics and microstructure evolution of backfill based on blast furnace slag cementitious materials[J]. Mining Research and Development, 2020, 40(11): 71−75.
    [4]
    Wang Lijuan, Liu Yujuan. Experimental study on fluidity and mechanical properties of alkali-activated slag/fly ash system[J]. Mining Research and Development, 2022,42(6):141−147. (王丽娟, 刘玉娟. 碱激发矿渣/粉煤灰体系流动性及力学性能试验研究[J]. 矿业研究与开发, 2022,42(6):141−147.

    Wang Lijuan, Liu Yujuan. Experimental study on fluidity and mechanical properties of alkali-activated slag/fly ash system[J]. Mining Research and Development, 2022, 42(6): 141−147.
    [5]
    Alzaza A, Ohenoja K, Shaikh F U A, et al. Mechanical and durability properties of C-S-H-seeded cement mortar cured at fluctuating low temperatures with granulated blast furnace slag as fine aggregates[J]. Journal of Building Engineering, 2022(57):14−21.
    [6]
    Hao Baichuan, Li Ziyue, Jia Dongfang, et al. Comprehensive utilization of titanium-bearing blast furnace slag[J]. Comprehensive Utilization of Minerals, 2020(6):1−6. (郝百川, 李子越, 贾东方, 等. 含钛高炉渣的综合利用[J]. 矿产综合利用, 2020(6):1−6.

    Hao Baichuan, Li Ziyue, Jia Dongfang, et al. Comprehensive utilization of titanium-bearing blast furnace slag[J]. Comprehensive Utilization of Minerals, 2020(6): 1−6.
    [7]
    Yang He, Chen Wei, Ma Shuangshi, et al. Experimental study on mechanical properties of high-titanium heavy slag tunnel shotcrete.[J]. Iron Steel Vanadium Titanium, 2023,44(3):118−122. (杨贺, 陈伟, 马双狮, 等. 高钛重矿渣隧道喷射混凝土力学性能试验研究[J]. 钢铁钒钛, 2023,44(3):118−122.

    Yang He, Chen Wei, Ma Shuangshi, et al. Experimental study on mechanical properties of high-titanium heavy slag tunnel shotcrete.[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 118−122.
    [8]
    Wang Jie, Li Gen, Liang Yuehua, et al. Experimental study on the prediction model of carbonization depth in high Ti-bearing blast furnace slag concrete[J]. Iron Steel Vanadium Titanium, 2022,43(2):101−106. (汪杰, 李根, 梁月华, 等. 高钛型高炉渣混凝土碳化深度试验研究[J]. 钢铁钒钛, 2022,43(2):101−106.

    Wang Jie, Li Gen, Liang Yuehua, et al. Experimental study on the prediction model of carbonization depth in high Ti-bearing blast furnace slag concrete[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 101−106.
    [9]
    Osman Hulusi Oren, Aliakbar Gholampour, Osman Gencel, et al. Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate[J]. Construction and Building Materials, 2020, 238:117774.
    [10]
    Kolisetty R K, Chore H S. Utilization of waste materials in construction activities: A green concept[C]// International Conference on Green Computing and Technology, 2013.
    [11]
    Hajime O, Masahiro O. Self-compacting concrete: development, present use and future[C]//First International RILEM Symposium on Self-Compacting Concrete, Rilem Publications SARL, 1999:3-14.
    [12]
    Ozawa K, Maekawa K, Kunishima M, et al. Development of high performance concrete based on the durability design of concrete structures[C]// The Second East-Asia and Pacific Concrete on Structural Engineering and Construction (EASEC-2), Tokyo, Japan, 1989:445-450.
    [13]
    He Xiang, Qiao Xiantao, Yu Peng, et al. Effect of industrial solid waste powder on the properties of self-compacting high performance concrete[J]. Silicate Bulletin, 2023,42(11):4017−4026. (何翔, 乔险涛, 喻鹏, 等. 工业固废粉末对自密实高性能混凝土性能的影响[J]. 硅酸盐通报, 2023,42(11):4017−4026.

    He Xiang, Qiao Xiantao, Yu Peng, et al. Effect of industrial solid waste powder on the properties of self-compacting high performance concrete[J]. Silicate Bulletin, 2023, 42(11): 4017−4026.
    [14]
    Zhang Lingling, Wang Haichao, Jiang Peixian, et al. Experimental study on the effect of particle shape of solid waste aggregate on the mechanical properties of self-compacting rockfill concrete[J]. Concrete, 2023(10):201−205. (张灵灵, 王海超, 姜佩弦, 等. 固废骨料粒形对自密实堆石混凝土力学性能的试验研究[J]. 混凝土, 2023(10):201−205.

    Zhang Lingling, Wang Haichao, Jiang Peixian, et al. Experimental study on the effect of particle shape of solid waste aggregate on the mechanical properties of self-compacting rockfill concrete[J]. Concrete, 2023(10): 201−205.
    [15]
    Chen Jiankui, Wang Dongmin. A new method for mix proportion design of high performance concrete (HPC) -total calculation method[J]. Journal of Silicate, 2000(2):194−198. (陈建奎, 王栋民. 高性能混凝土(HPC)配合比设计新法——全计算法[J]. 硅酸盐学报, 2000(2):194−198.

    Chen Jiankui, Wang Dongmin. A new method for mix proportion design of high performance concrete (HPC) -total calculation method[J]. Journal of Silicate, 2000(2): 194−198.
    [16]
    Wang Zhen, Li Huajian, Yi Zhonglai, et al. New research progress on the stability mechanism and influencing factors of self-compacting concrete[J]. Material introduction, 2017,31(S1):379−383. (王振, 李化建, 易忠来, 等. 自密实混凝土稳定性机理及其影响因素研究新进展[J]. 材料导报, 2017,31(S1):379−383.

    Wang Zhen, Li Huajian, Yi Zhonglai, et al. New research progress on the stability mechanism and influencing factors of self-compacting concrete[J]. Material introduction, 2017, 31(S1): 379−383.
    [17]
    Wu Z M, Zhang Y G, Zheng J J, et al. An experimental study on the workability of self-compacting lightweight concrete[J]. Construction and Building Materials, 2009,23(5):2087−2092. doi: 10.1016/j.conbuildmat.2008.08.023
    [18]
    Pal S C, Mukherjee A, Pathak S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete[J]. Cement and Concrete Research, 2003,33(9):1481−1486. doi: 10.1016/S0008-8846(03)00062-0
    [19]
    Liu Sifeng. Grey system theory and its application [M]. Beijing:Science Press, 2010. (刘思峰. 灰色系统理论及其应用[M]. 北京:科学出版社, 2010.

    Liu Sifeng. Grey system theory and its application [M]. Beijing: Science Press, 2010.
    [20]
    Li B, Cai L, Zhu W. Predicting service life of concrete structure exposed to sulfuric acid environment by grey system theory [J]. International Journal of Civil Engineering, 2018, 16(9): 1017-1027.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(12)

    Article Metrics

    Article views (430) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return