| Citation: | Liu Nianfu, Shen Wei, Tian Qianren, Fu Jianxun. Overview of non-quenched and tempered steel for automotive[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 115-124. doi: 10.7513/j.issn.1004-7638.2024.02.017 |
| [1] |
董成瑞. 微合金非调质钢[M]. 北京: 冶金工业出版社, 2000.
Dong Chengrui. Microalloyed non quenched and tempered steel[M]. Beijing: Metallurgical Industry Press, 2000.
|
| [2] |
Deardo A J, Hua M J, Cho K G, et al. On strength of microalloyed steels: an interpretive review[J]. Materials Science and Technology, 2013,25(9):1074−1082.
|
| [3] |
Thewillis G, Naylor D J. New alloys help cut the cost of forged steel components[J]. Metals and Materials, 1981,(12):21−28.
|
| [4] |
米丰亮. 非调质钢C38+N曲轴组织和力学性能研究[D]. 济南: 山东大学, 2018.
Mi Fengliang. Regulation of microstructure and mechanical properties of C38+N crankshaft of non quenched and tempered steel[D]. Jinan: Shandong University, 2018.
|
| [5] |
Mibourn D. Vanadium microalloyed non-quench and temper forging steels[R]. Chongqing: International Vanitec Technology Committee, 2011: 1-35.
|
| [6] |
Chen Yunbo, Ma Mingtu, Wang Guodong. Resent progress of non-quenched and tempered steel for automotive sheet[J]. Strategic Study of CAE, 2014,16(2):4−17, 45. (陈蕴博, 马鸣图, 王国栋. 汽车用非调质钢的研究进展[J]. 中国工程科学, 2014,16(2):4−17, 45.
Chen Yunbo, Ma Mingtu, Wang Guodong. Resent progress of non-quenched and tempered steel for automotive sheet[J]. Strategic Study of CAE, 2014, 16(2): 4-17+45.
|
| [7] |
Chen Silian, Hui Weijun, Wang Lianhai, et al. Research and development of energy-saving high performance microalloyed forging steels[J]. Iron & Steel, 2014,49(6):1−7. (陈思联, 惠卫军, 王连海, 等. 节能低成本高品质非调质钢的研发[J]. 钢铁, 2014,49(6):1−7.
Chen Silian, Hui Weijun, Wang Lianhai, et al. Research and development of energy-saving high performance microalloyed forging steels[J]. Iron & Steel, 2014, 49(06): 1-7.
|
| [8] |
Miao Taosheng, Jiang Peng. Application research on non-quenched and tempered steel for automotive forging of crankshaft and connecting rod[J]. Forging & Stamping Technology, 2010,35(6):1−5. (缪桃生, 蒋鹏. 非调质钢在汽车曲轴、连杆锻件上的应用研究[J]. 锻压技术, 2010,35(6):1−5.
Miao Taosheng, Jiang Peng. Application research on non-quenched and tempered steel for automotive forging of crankshaft and connecting rod[J]. Forging & Stamping Technology, 2010, 35(6): 1-5.
|
| [9] |
Dong Han. Understanding of developing high quality special steel industry[J]. China Steel, 2011,(10):10−13. (董瀚. 对发展高品质特殊钢产业的认识[J]. 中国钢铁业, 2011,(10):10−13. doi: 10.3969/j.issn.1672-5115.2011.10.004
Dong Han. Understanding of developing high quality special steel industry[J]. China Steel, 2011(10): 10-13. doi: 10.3969/j.issn.1672-5115.2011.10.004
|
| [10] |
Zhou Yazhuo, Jin Wenhui, Yu Qin, et al. Development trend on crankshaft materials of non quenched and tempered steel[J]. Heat Treatment Technology and Equipment, 2018,39(4):61−65. (周亚倬, 金文辉, 于勤, 等. 非调质钢曲轴用材发展趋势[J]. 热处理技术与装备, 2018,39(4):61−65.
Zhou Yazhuo, Jin Wenhui, Yu Qin, et al. Development trend on crankshaft materials of non quenched and tempered steel[J]. Heat Treatment Technology and Equipment, 2018, 39(04): 61-65.
|
| [11] |
Naylor D J. Review of international activity on microalloyed engineering steels[J]. Ironmaking & Steelmaking, 1989,16(4):246−252.
|
| [12] |
Liu Donglin, Tan Li, Liu Pan, et al. The application of 38MnVS6 non quenched and tempered steel on automobile steering knuckle[J]. Hot Working Technology, 2014,43(2):80−81, 85. (刘栋林, 谭利, 刘攀, 等. 38MnVS6非调质钢在汽车转向节上的应用[J]. 热加工工艺, 2014,43(2):80−81, 85.
Liu Donglin, Tan Li, Liu Pan, et al. The application of 38 MnVS6 non quenched and tempered steel on automobile steering knuckle [J]. Hot Working Technology, 2014, 43(02): 80-81+85.
|
| [13] |
Buchmayr B. Critical assessment 22: bainitic forging steels[J]. Materials Science and Technology, 2016,32(6):517−522. doi: 10.1080/02670836.2015.1114272
|
| [14] |
Liu Jie, Wu Dan, Yang Xiujuan, et al. Research status and development trend of non-quenched and tempered steel[J]. Hot Working Technology, 2021,50(23):1−6, 10. (刘洁, 吴丹, 杨秀娟, 等. 非调质钢的研究现状及发展趋势[J]. 热加工工艺, 2021,50(23):1−6, 10.
Liu Jie, Wu Dan, Yang Xiujuan, et al. Research status and development trend of non-quenched and tempered steel[J]. Hot Working Technology, 2021, 50(23): 1-6+10.
|
| [15] |
Merkel C, Engineer J. Hochfester bainitischer stahl 20MnCrMo7 für umformanwendungen[J]. Schmiede Journal, 2014(2): 38-41.
|
| [16] |
Wang Xiaoning, Fang Gang, Li Yang, et al. Application status and development of automotive non quenched and tempered steel[J]. Automobile Technology & Material, 2014,(9):52−58. (王小宁, 方刚, 李阳, 等. 汽车用非调质钢的应用现状与发展[J]. 汽车工艺与材料, 2014,(9):52−58.
Wang Xiaoning, Fang Gang, Li Yang, et al. Application status and development of automotive non quenched and tempered steel[J]. Automobile Technology & Material, 2014(09): 52-58.
|
| [17] |
Gu Zhimin, Zhang Qingjun, Zhu Liguang, et al. Recent progress in non-quenched-tempered and its application[J]. Journal of North China University of Science and Technology(Natural Science Edition), 2012,34(3):59−63. (谷志敏, 张庆军, 朱立光, 等. 非调质钢的研究进展及其实践[J]. 河北联合大学学报(自然科学版), 2012,34(3):59−63.
Gu Zhimin, Zhang Qingjun, Zhu Liguang, et al. Recent progress in non-quenched-tempered and its application[J]. Journal of North China University of Science and Technology(Natural Science Edition) , 2012, 34(03): 59-63.
|
| [18] |
吴玮. 汽车零部件用非调质钢的应用和发展[J]. 世界钢铁, 2009, 9(4): 62-68.
Wu Wei. Application and development of non-quenched and tempered steel for automotive parts[J]. World Iron & Steel, 2009, 9(4): 62-68.
|
| [19] |
市场调研报告. 全球及中国非调质钢市场现状及未来趋势走向分析报告, QYResearch预测: 2019-2025全球与中国非调质钢市场现状及未来发展趋势[EB/OL]. (2020-10-27) [2023-07-02]. https://zhuanlan.zhihu.com/p/84287755.
Market research report analysis. Report on the current situation and future trends of the global and Chinese non quenched and tempered steel market, QYResearch Forecast: 2019-2025 Current situation and future development trends of the global and Chinese non quenched and tempered steel market [EB/OL]. (2019-09-26) [2022-05-15]. https://zhuanlan.zhihu.com/p/84287755.
|
| [20] |
智研咨询. 2018年中国非调质钢行业产量82.4万吨, 预计2020年市场规模将超过60亿元[EB/OL]. (2019-03-21) . https://www.chyxx.com/industry/201903/723554.html.
Zhiyanzixun. In 2018, China's non quenched and tempered steel industry produced 824000 tons, and it is expected that the market size will exceed 6 billion yuan by 2020 [EB/OL]. (2019-03-21) .https://www.chyxx.com/industry/201903/723554.html.
|
| [21] |
全国新能源汽车保有量达1310万辆[N]. 新能源汽车报, 2023-01-16(5).
The total number of new energy vehicles in China has reached 13.1 million [N] .New Energy Vehicle News, 2023-01-16 (5).
|
| [22] |
马鸣图. 双相钢——物理和力学冶金第2版[M]. 北京: 冶金工业出版社, 2009: 1-12.
Ma Mingtu. Duplex steels - physical and mechanical metallurgy 2nd Edition[M]. Beijing: Metallurgical Industry Press, 2009: 1-12.
|
| [23] |
Huo Dongmei, Xiao Bangguo, Yang Weining, et al. Summary of the standard“Non-quenched and tempered steel for automobile crankshaft and connecting rod"[J]. Metallurgical Economy and Management, 2020,(3):41−43. (霍咚梅, 肖邦国, 杨伟宁, 等. 《汽车曲轴和连杆用非调质圆钢》团体标准综述[J]. 冶金经济与管理, 2020,(3):41−43.
Huo Dongmei, Xiao Bangguo, Yang Weining, et al. Summary of the standard“Non-quenched and tempered steel for automobile crankshaft and connecting rod"[J]. Metallurgical economy and management, 2020(03): 41-43.
|
| [24] |
Zhu Shuaishuai, Wang Zhangzhong, Mao Xiangyang, et al. A review about strengthening-toughening technologies for ferrite-pearlite non-quenched and tempered steels[J]. Materials Reports, 2016,30(9):122−126. (朱帅帅, 王章忠, 毛向阳, 等. 铁素体-珠光体型非调质钢强韧化技术研究进展[J]. 材料导报, 2016,30(9):122−126.
Zhu Shuaishuai, Wang Zhangzhong, Mao Xiangyang, et al. A review about strengthening-toughening technologies for ferrite-pearlite non-quenched and tempered steels[J]. Materials Reports, 2016, 30(09): 122-126.
|
| [25] |
Chen Silian, Zhao Xiaoli, Hui Weijun, et al. Precipitation behavior of medium-carbon steel for fracture splitting connecting rod[J]. Iron & Steel, 2015,50(7):77−83. (陈思联, 赵晓丽, 惠卫军, 等. 胀断连杆用中碳非调质钢的析出强化行为[J]. 钢铁, 2015,50(7):77−83.
Chen Silian, Zhao Xiaoli, Hui Weijun, et al. Precipitation behavior of medium-carbon steel for fracture splitting connecting rod[J]. Iron & Steel, 2015, 50(07): 77-83.
|
| [26] |
Jha G, Sharma R, Jha C N, et al. Medium carbon microalloyed steel 49MnVS3: development towards improved quality[J]. Transactions of the Indian Institute of Metals, 1997,50(2):181−190.
|
| [27] |
Chen Yunbo, Ma Wei, Jin Kang. Development on improving the strength & toughness of microalloyed steels[J]. Materials Reports, 2000,(8):3−7. (陈蕴博, 马炜, 金康. 强韧微合金非调质钢的研究动向[J]. 材料导报, 2000,(8):3−7.
Chen Yunbo, Ma Wei, Jin Kang. Development on lmproving the strength & toughness of microalloyed steels[J]. Materials Reports, 2000(08): 3-7.
|
| [28] |
Song Yu, Wu Guoping, Wu Tianli. Application of oxide metallurgy technique in improving microstructure and property of steels[J]. China Metallurgy, 2012,22(6):1−7, 11. (宋宇, 武国平, 吴天礼. 氧化物冶金技术在改善钢材组织和性能中的应用[J]. 中国冶金, 2012,22(6):1−7, 11.
Song Yu, Wu Guoping, Wu Tianli. Application of oxide metallurgy technique in lmproving microstructure and property of steels[J]. China Metallurgy, 2012, 22(06): 1-7+11.
|
| [29] |
Yu Yang, Pan Tao. New technology opens up new space - rapid development and application of vanadium nitrogen alloying technology[J]. China Metallurgy, 2005,(2):44−45. (于杨, 潘涛. 新技术开启新空间−迅猛发展应用的钒氮合金化技术[J]. 中国冶金, 2005,(2):44−45.
Yu Yang, Pan Tao. New technology opens up new space - rapid development and application of vanadium nitrogen alloying technology[J]. China Metallurgy, 2005(02): 44-45.
|
| [30] |
Chen Silian, Hui Weijun, Shao Chengwei, et al. Effect of controlled cooling on microstructure and properties of medium-carbon high-vanadium microalloyed steel[J]. Iron & Steel, 2015,50(8):77−82. (陈思联, 惠卫军, 邵成伟, 等. 控制冷却对中碳高钒非调质钢组织性能的影响[J]. 钢铁, 2015,50(8):77−82.
Chen Silian, Hui Weijun, Shao Chengwei, et al. Effect of controlled cooling on microstructure and properties of medium-carbon high-vanadium microalloyed steel[J]. Iron & Steel, 2015, 50(08): 77-82.
|
| [31] |
Liu H T, Chen W Q. Research on recovery for adding low melting point metal bismuth to eco-friendly Bi–S based free cutting steel[J]. Ironmaking & Steelmaking, 2014,41(5):355−359.
|
| [32] |
Mohla P P, Beech J. The formation of sulphide inclusions in cast steel[J]. Brit Foundryman, 1968,61(12):453−460.
|
| [33] |
马鸣图. 汽车用非调质钢的进展[C]//全国高品质特殊钢生产技术研讨会暨中国金属学会特殊钢学术年会.济南:中国金属学会, 2021.
Ma Mingtu. Development of non quenched and tempered steels for automobiles[C]// National High Quality Special Steel Production Technology Seminar and Special Steel Academic Annual Meeting of China Metal Society. Jinan:China Metal Society,2021.
|
| [34] |
Wang Zhanhua, Hui Weijun, Zhang Yongjian, et al. High-cycle fatigue properties of microalloyed medium-carbon forging steel 45MnVS with modified sulfide[J]. Iron & Steel, 2021,56(10):117−126. (王占花, 惠卫军, 张永健, 等. 硫化物变性处理45MnVS非调质钢的高周疲劳性能[J]. 钢铁, 2021,56(10):117−126.
Wang Zhanhua, Hui Weijun, Zhang Yongjian, et al. High-cycle fatigue properties of microalloyed medium-carbon forging steel 45 MnVS with modified sulfide[J]. Iron & Steel, 2021, 56(10): 117-126.
|
| [35] |
Zhou Zhiwei, Tian Jun, Xu Yifeng. Distribution of inclusions in non-quenched and tempered steel billets[J]. Steelmaking, 2019,35(5):68−74. (周志伟, 田俊, 徐益峰. 非调质钢铸坯中夹杂物的分布[J]. 炼钢, 2019,35(5):68−74.
Zhou Zhiwei, Tian Jun, Xu Yifeng. Distribution of inclusions in non-quenched and tempered steel billets[J]. Steelmaking, 2019, 35(05): 68-74.
|
| [36] |
Qiao Xueliang, Sun Peizhen. Quantitative study on Ca content and sulfide morphology in free cutting steel[J]. Journal of Huazhong University of Science and Technology, 1995,23(1):121−123. (乔学亮, 孙培祯. 易切削钢中Ca含量与硫化物形态的定量研究[J]. 华中理工大学学报, 1995,23(1):121−123.
Qiao Xueliang, Sun Peizhen. Quantitative study on Ca content and sulfide morphology in free cutting steel[J]. Journal of Huazhong University of Science and Technology, 1995, 23(1): 121-123.
|
| [37] |
Larsson A, Ruppi S. Structure and composition of built-up layers on coated tools during turning of Ca-treated steel[J]. Materials Science and Engineering:A, 2001,313(1-2):160−169. doi: 10.1016/S0921-5093(01)00964-9
|
| [38] |
Ai Kenan, Xie Jianbo, Zeng Zhiqi, et al. Effect of Mg on microstructure and sulfide in non-quenched and tempered steel[J]. Journal of Iron and Steel Research, 2019,31(4):361−367. (艾克南, 谢剑波, 曾志崎, 等. 镁对非调质钢中组织及硫化物的影响[J]. 钢铁研究学报, 2019,31(4):361−367.
Ai Kenan, Xie Jianbo, Zeng Zhiqi, et al. Effect of Mg on microstructure and sulfide in non-quenched and tempered steel[J]. Journal of Iron and Steel Research, 2019, 31(04): 361-367.
|
| [39] |
Feng Shunhuai. Development of free cutting steel at home and abroad in the 1980s[J]. Manufacturing Technology & Machine Tool, 1994,(7):51−54. (封顺怀. 80年代国内外易切削钢的发展[J]. 制造技术与机床, 1994,(7):51−54.
Feng Shunhuai. Development of free cutting steel at home and abroad in the 1980 s[J]. Manufacturing Technology & Machine Tool, 1994(07): 51-54.
|
| [40] |
Lou Dechun, Wu Xiaochun. Prediction of rare earth inclusion in free cutting steel[J]. Research on Iron and Steel, 1995,(3):29−33, 28. (娄德春, 吴晓春. 易切削钢中稀土夹杂物类型的预测[J]. 钢铁研究, 1995,(3):29−33, 28.
Lou Dechun, Wu Xiaochun. Prediction of rare earth inclusion in free cutting steel[J]. Research on Iron and Steel, 1995(03): 29-33+28.
|
| [41] |
Yao Dengyuan, Wu Huajie, Lu Pengyan, et al. Effect of Ca treatment on sulfides morphology in S-bearing non-quenched and tempered steel[J]. China Metallurgy, 2017,27(4):11−16. (姚登元, 吴华杰, 陆鹏雁, 等. 钙处理对含硫非调质钢中硫化物形态的影响[J]. 中国冶金, 2017,27(4):11−16.
Yao Dengyuan, Wu Huajie, Lu Pengyan, et al. Effect of Ca treatment on sulfides morphology in S-bearing non-quenched and tempered steel[J]. China Metallurgy, 2017, 27(04): 11-16.
|
| [42] |
Shen P, Yang Q K, Zhang D, et al. The effect of tellurium on the formation of MnTe-MnS composite Inclusions in non-quenched and tempered steel[J]. Metals, 2018,8(8):639(1−12).
|
| [43] |
Shen P, Zhou L, Yang Q K, et al. Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel[J]. Metallurgical Research and Technology, 2020,117(6):615(1−8).
|
| [44] |
Xie Xiaoyu, Gu Chao, Wang Min, et al. Manganese sulfide inclusion control technology in medium and high sulfur steel[J]. Iron & Steel, 2021,56(12):52−61. (谢啸宇, 顾超, 王敏, 等. 中高硫钢中硫化锰夹杂物控制技术[J]. 钢铁, 2021,56(12):52−61.
Xie Xiaoyu, Gu Chao, Wang Min, et al. Manganese sulfide inclusion control technology in medium and high sulfur steel[J]. Iron & Steel, 2021, 56(12): 52-61.
|
| [45] |
Hu Tao, Zhong Liangmei, Zhou Lei, et al. The practice of tellurium to control the form of sulfide in non-quenched and tempered steel[J]. Steelmaking, 2022,38(1):63−67. (胡涛, 钟亮美, 周蕾, 等. 碲对非调质钢中硫化物形态调控的实践[J]. 炼钢, 2022,38(1):63−67.
Hu Tao, Zhong Liangmei, Zhou Lei, et al. The practice of tellurium to control the form of sulfide in non-quenched and tempered steel[J]. Steelmaking, 2022, 38(01): 63-67.
|
| [46] |
吴华杰. 二次开坯轧制对含硫钢硫化物形态分布的影响[C]//2021年全国炉外精炼论文集.贵阳: 北京金属学会, 2021: 619-625.
Wu Huajie. Effect of secondary bloom rolling on sulfide morphology distribution of sulfur-containing steel[C]//2021 Proceedings of National off Furnace Refining.Guiyang: Beijing Metal Society, 2021: 619-625.
|
| [47] |
Shao X J, Wang X H, Ji C X, et al. Morphology, size and distribution of MnS inclusions in non-quenched and tempered steel during heat treatment[J]. International Journal of Minerals, Metallurgy and Materials, 2015,22(5):483−491. doi: 10.1007/s12613-015-1097-8
|
| [48] |
Shao Xiaojing, Wang Xinhua, Wang Wanjun, et al. lnfluence of isothermal treatment on sulfides in YF45MnV steel[J]. Transactions of Materials and Heat Treatment, 2010,31(10):80−84. (邵肖静, 王新华, 王万军, 等. 等温热处理对YF45MnV钢中硫化物的影响[J]. 材料热处理学报, 2010,31(10):80−84.
Shao Xiaojing, Wang Xinhua, Wang Wanjun, et al. lnfluence of isothermal treatment on sulfides in YF45 MnV steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(10): 80-84.
|
| [49] |
Shao X J, Wang X H, Jiang M, et al. Effect of heat treatment conditions on shape control of large-sized elongated MnS inclusions in resulfurized free-cutting steels[J]. ISIJ International, 2011,51(12):1995−2001. doi: 10.2355/isijinternational.51.1995
|
| [50] |
刘辉. 含硫钢凝固过程硫化锰析出及生长行为研究[D]. 上海: 上海大学, 2019.
Liu Hui. The precipitation and growth behavior of MnS during solidification in resulphurised steel[D]. Shanghai: Shanghai University, 2019.
|
| [51] |
许伟阳. 连铸齿轮钢矩形坯碳“锭型”偏析的形成与控制[D]. 北京: 钢铁研究总院, 2011.
Xu Weiyang. The formation and control of carbon segregation of gear steel in the bloom casting process[D]. Beijing: Central Iron and Steel Research Institute, 2011.
|